Les analyses en rouge sont celles dont nous n'avons pas le bulletin mais leur exploitation a été faite, il faut voir avec l'ARS si on incère ces bulletins en annexe

sources	Nb de sources	2000	2002	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
Dansadour	1 source	29/11/2000 analyse complète dans captage 73086		14/09/2004 P1 1 24670	11/08/2005 - P1	24/08/2006 AUTOR 206817	09/08/2007 P1		30/09/2009 P1	17/08/2010 P1	22/06/2001 RPZF						
La Garde	1 source	24 oct 2000 analyse complète dans captage + arsenic 72020			11/08/2005 RP	16/05/2006 P1	07/05/2007 P2	P1 06/10/2008 analyse dans bâche 234934		17/08/2010 P1	22/06/2011 RPZF						
La Fayolle	1 source	25 oct 2000 analyse complète dans captage + arsenic 72019		14/09/2004 P1 126212	17/05/2005 P1	16/05/2006 P1			02/06/2009 <i>P2ZF</i>								
Sous les Fayards	1 source	24 oct 2000 ds captage + arsenic 72021					07/05/2007 <i>RP</i> manque		27/07/2009 RPZF		06/10/2011 RPZF		18/09/2013 RPFP		06/10/2015		20/06/2017
Le Lavoir	1 source	24-oct-00 drain 1 (partiel) 72022 Drain 2 (partiel) 72023 Drain 3 (partiel) 72024 Bac (complète)		14/09/2004 RP 124673				AUTRP 234933	27/07/2009 RPZF		06/10/2011 RPZF		18/09/2013 RPFP		06/10/2015		20/06/2017
La Marue	1 source	23-oct-00 drain 1 (partiel) 72002 Drain 2 (partiel) 72003 Drain 3 (complet) + arsenic 72004 Drain 4 (partiel) 72005 Drain 5 (partiel) 72006 Mélange 1 à 5 (complet) + arsenic 72007		10/06/2004 RP 118860				07/10/2008 AUTRP 234935	27/07/2009 RPZF		06/10/2011 RPZF		16/04/2013 RPFP		06/10/2015		20/06/2017
Jouvet		21/10/2000 Drain droit (partiel) 72034 Drain gauche (partiel) 72035 Captage (complet) 72017		14/09/2004 P1 124671 Dans regard de jonction (partiel) 127628 19/10/2004 D1 +	11/08/2005 P1	P1	09/08/2007 RP 17/08/2007 D1 31/08/2007 D14+			17/08/2010 P1		21/06/2012 <i>RPZF</i>					
L'Estival	1 source	24 oct 2000 analyse complète dans captage + arsenic 72018		10/06/2004 P1 14/09/2004 P1 124674 04/11/2004 P1	17/05/2005 P1 11/08/2005 P1	24/08/2006 AUTOR	07/05/2007 P1 09/08/2007 P2 13/05/2008 P1		28/05/2009 P1 30/09/2009 P1	09/06/2010 P1 17/08/2010 P1	22/06/2011 RPZF					28/06/2016	
Les Montilles		26 oct 2000 analyse complète dans captage + arsenic 72026	28/03/2002 AS <i>88103</i>	10/06/2004 P1		24/08/2006 AUTOR 206818				30/06/2011 <i>RPZF</i>							
		26-oct-00	28/03/2002 AS	27-janv-03	11/08/2005 RP			07/10/2008 AUTRP		22/10/2010 RPZF		21/06/2012 <i>RPZF</i>				28/06/2016	20/06/2017

		drain 1 (partiel)	88105	arsenic	Analyse complète dans bac	234931					
		72027		99648	139092						,
Pallayes Ouest	8 sources	drain 2 (partiel)		Drain 2 face centre antimoine et arsenic							
		72028		99649							, ,
		drain 3 (partiel)		Drain 3 face droite antimoine et arsenic							
		72029		99650							1
		regard de jonction (complet) + arsenic									1
		72030				07/10/2008				 1	
		26-oct-00	28-mars-02	27-janv-03		07/10/2008 AUTOR					
		Drain droit (partiel)	I H Y I J K ()	Drain 1 face hydrocarbures totaux		234930					
Pallayes Est	4 sources	72032									,
,	. 504.005	Drain gauche (partiel)		Drain 2 droite au fond							1
		72033		hydrocarbures totaux							,
		Regard de jonction (complet) + arsenic 72031		99647 10/06/2004 P1							1
		72031		04/11/2004 P1							
		23-oct-00			17/05/2005	07/10/2008	22/10/2010			28/06/2016	
Boyer 1	1 source	analyse complète		10/06/2004 P1	RP	AUTRP 234932	RPZF				
		72008			135114	234332					
Forago do		12000								23/05/2016	
Forage de Novacelles	1 forage									28/07/2016 10/10/2016	10/05/2017

Type d'analyse

Programme analyse routine

D1

RP Programme analyse ressource P1 Programme analyse routine P2 Programme analyse complet RPFP RP + zone foret prairie D1+ D1 simplifié avec chlore RPZF RP + pesticides zone foret AS Arsenic P2ZF P2 + pesticides zone foret

AUTOR Autorisation décrêt 2001 AUTRP

AUTOR - RP

date en rouge : pas de bulletins en annexe mais analyses exploitées à partir des fichiers de l'ARS

date en noir : bulletins présentés en annexe

SYNTHESE DES RESULTATS D'ANALYSES BACTERIOLOGIQUES SUR LES CAPTAGES DU SIAEP DU HAUT LIVRADOIS

Réf : arrêté du 11 janvier 2007 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine

MEDEYROLLES - D	ANSADOUR	GT22	GT37	CTF	CTHF	STRF	ECOLI	ANAE	BSIR
		germes totaux à 22 °C	germes totaux à 37 °C	coliformes totaux	coliformes thermotolérants	entérocoques	escherichia coli	bactéries ananaérobies	bactérie et spore anaérobies sulfito- réductrices y compris les spores
		(UFC/ml)	(UFC/ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/20 ml)	(UFC/100 ml)
Normes eau brute	Limite qualité					10000/100 ml	20000/100 ml		
	Limite qualité					0/100 ml	0/100 ml		
Normes eau mise en distribution	Référence qualité		un rapport de 10 valeur habituelle	0/100ml	0/100ml				0/100ml
24/10/2000	DANSADOUR	0	0	0	0	0		0	
14/09/2004	DANSADOUR	0	0	0		0	0		
11/08/2005	DANSADOUR	3	0	0		0	0		
24/08/2006	DANSADOUR	0	0	0		0	0		0
09/08/2007	DANSADOUR	4	0	0		0	0		
30/09/2009	DANSADOUR			0		0	0		
17/08/2010	DANSADOUR			2		0	0		
22/06/2011	DANSADOUR					0	0		

MEDEYROLLES - LA	A GARDE (LE SUC DE LAIR)	GT22	GT37	CTF	CTHF	STRF	ECOLI	ANAE	BSIR
		germes totaux à 22 °C	germes totaux à 37 °C	coliformes totaux	coliformes thermotolérants	entérocoques	escherichia coli	bactéries ananaérobies	bactérie et spore anaérobies sulfito- réductrices y compris les spores
		(UFC/ml)	(UFC/ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/20 ml)	(UFC/100 ml)
Normes eau brute	Limite qualité					10000/100 ml	20000/100 ml		
	Limite qualité					0/100 ml	0/100 ml		
Normes eau mise en distribution	Référence qualité		un rapport de 10 valeur habituelle	0/100ml	0/100ml				0/100ml
24/10/2000	LA GARDE (LE SUC DE LAIR)	10	0	0	0	0		0	
14/09/2004	LA GARDE (LE SUC DE LAIR)	1	0	0		0	0		
11/08/2005	LA GARDE (LE SUC DE LAIR)					0	0		
16/05/2006	LA GARDE (LE SUC DE LAIR)	2	0	0		0	0		
07/05/2007	LA GARDE (LE SUC DE LAIR)	1	0	0		0	0		
13/05/2008	LA GARDE (LE SUC DE LAIR)			0		0	0		
06/10/2008	LA GARDE (LE SUC DE LAIR)			0		0	0		0
02/06/2009	LA GARDE (LE SUC DE LAIR)			0		0	0		
17/08/2010	LA GARDE (LE SUC DE LAIR)			0		0	0		
22/06/2011	LA GARDE (LE SUC DE LAIR)					0	0		

MEDEYROLLES - S	OUS LES FAYARDS	GT22	GT37	CTF	CTHF	STRF	ECOLI	ANAE	BSIR
		germes totaux à 22 °C	germes totaux à 37 °C	coliformes totaux	coliformes thermotolérants	entérocoques	escherichia coli	bactéries ananaérobies	bactérie et spore anaérobies sulfito- réductrices y compris les spores
		(UFC/ml)	(UFC/ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/20 ml)	(UFC/100 ml)
Normes eau brute	Limite qualité					10000/100 ml	20000/100 ml		
	Limite qualité					0/100 ml	0/100 ml		
Normes eau mise en distribution	Référence qualité		un rapport de 10 valeur habituelle	0/100ml	0/100ml				0/100ml
24/10/2000	SOUS LES FAYARDS	2	0	2	2	0		0	
07/05/2007	SOUS LES FAYARDS			3		0	3		
07/10/2008	SOUS LES FAYARDS			2		0	0		0
27/07/2009	SOUS LES FAYARDS			0		0	0		
06/10/2011	SOUS LES FAYARDS					0	0		
18/09/2013	SOUS LES FAYARDS					0	0	•	

MEDEYROLLES - LI	E LAVOIR	GT22	GT37	CTF	CTHF	STRF	ECOLI	ANAE	BSIR
		germes totaux à 22 °C	germes totaux à 37 °C	coliformes totaux	coliformes thermotolérants	entérocoques	escherichia coli	bactéries ananaérobies	bactérie et spore anaérobies sulfito- réductrices y compris les spores
		(UFC/ml)	(UFC/ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/20 ml)	(UFC/100 ml)
Normes eau brute	Limite qualité					10000/100 ml	20000/100 ml		
	Limite qualité					0/100 ml	0/100 ml		
Normes eau mise en distribution	Référence qualité		un rapport de 10 valeur habituelle	0/100ml	0/100ml				0/100ml
24/10/2000	DRAIN 1 EST ELOIGNE (CHELLES)	0	0	0	0	0		0	
24/10/2000	DRAIN 2 EST PROCHE (RIX)	10	1	2	2	0		0	
24/10/2000	DRAIN 3 SUD (LAVOIR)	15	0	0	0	0		0	
14/09/2004	LE LAVOIR					3	0		
06/10/2008	LE LAVOIR			0		0	0		0
27/07/2009	LE LAVOIR			0		0	0		
06/10/2011	LE LAVOIR					0	0		
18/09/2013	LE LAVOIR					0	0		
06/10/2015	LE LAVOIR					<1	<1		
20/06/2017	LE LAVOIR					<1	<1		

MEDEYROLLES - LA	A MARUE	GT22	GT37	CTF	CTHF	STRF	ECOLI	ANAE	BSIR
		germes totaux à 22 °C	germes totaux à 37°C	coliformes totaux	coliformes thermotolérants	entérocoques	escherichia coli	bactéries ananaérobies	bactérie et spore anaérobies sulfito- réductrices y compris les spores
		(UFC/ml)	(UFC/ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/20 ml)	(UFC/100 ml)
Normes eau brute	Limite qualité					10000/100 ml	20000/100 ml		
	Limite qualité					0/100 ml	0/100 ml		
Normes eau mise en distribution	Référence qualité		in rapport de 10 valeur habituelle	0/100ml	0/100ml				0/100ml
23/10/2000	DRAIN 1	2	0	0	0	0		0	
23/10/2000	DRAIN 2	0	0	0	0	0		0	
23/10/2000	DRAIN 3	0	1	0	0	0		0	
23/10/2000	DRAIN 4	10	3	2	2	0		0	
23/10/2000	DRAIN 5	5	2	0	0	0		0	
10/06/2004	LA MARUE					0	0		
07/10/2008	LA MARUE			0		0	0		0
27/07/2009	LA MARUE			0		0	0		
06/10/2011	LA MARUE					0	0		
16/04/2013	LA MARUE			•		0	0		
06/10/2015	LA MARUE					<1	<1		
20/06/2017	LA MARUE					<1	<1		

MEDEYROLLES - JO	DUVET	GT22	GT37	CTF	CTHF	STRF	ECOLI	ANAE	BSIR
		germes totaux à 22 °C	germes totaux à 37 °C	coliformes totaux	coliformes thermotolérants	entérocoques	escherichia coli	bactéries ananaérobies	bactérie et spore anaérobies sulfito- réductrices y compris les spores
		(UFC/ml)	(UFC/ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/20 ml)	(UFC/100 ml)
Normes eau brute	Limite qualité					10000/100 ml	20000/100 ml		
	Limite qualité					0/100 ml	0/100 ml		
Normes eau mise en distribution	Référence qualité		un rapport de 10 valeur habituelle	0/100ml	0/100ml				0/100ml
24/10/2000	DRAIN DROIT	0	1	0	0	0		0	
24/10/2000	DRAIN GAUCHE	2	0	0	0	0		0	
14/09/2004	JOUVET	>300	20	12		12	12		
19/10/2004	JOUVET	0	0	0		0	0		
11/08/2005	JOUVET	3	0	0		0	0		
24/08/2006	JOUVET	41	0	4		0	0		
09/08/2007	JOUVET			61		0	61		
17/08/2007	JOUVET	8	0	22		0	22		
31/08/2007	JOUVET	0	1	0		0	0		0
06/10/2008	JOUVET			4		0	0		0
05/08/2009	JOUVET			0		0	0		
17/08/2010	JOUVET			2		0	2		
21/06/2012	JOUVET					1	0		

MEDEYROLLES - L'	ESTIVAL	GT22	GT37	CTF	CTHF	STRF	ECOLI	ANAE	BSIR
		germes totaux à 22 °C	germes totaux à 37 °C	coliformes totaux	coliformes thermotolérants	entérocoques	escherichia coli	bactéries ananaérobies	bactérie et spore anaérobies sulfito- réductrices y compris les spores
		(UFC/ml)	(UFC/ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/20 ml)	(UFC/100 ml)
Normes eau brute	Limite qualité					10000/100 ml	20000/100 ml		
	Limite qualité					0/100 ml	0/100 ml		
Normes eau mise en distribution	Référence qualité		un rapport de 10 valeur habituelle	0/100ml	0/100ml				0/100ml
24/10/2000	L'ESTIVAL (CAP)	3	0	0	0	0		0	
10/06/2004	L'ESTIVAL (CAP)	9	0	0		0	0		
14/09/2004	L'ESTIVAL (CAP)	16	0	0		0	0		
04/11/2004	L'ESTIVAL (CAP)	0	0	0		0	0		
17/05/2005	L'ESTIVAL (CAP)	9	0	0		0	0		
11/08/2005	L'ESTIVAL (CAP)	25	0	0		0	0		
16/05/2006	L'ESTIVAL (CAP)	1	0	0		0	0		
24/08/2006	L'ESTIVAL (CAP)	10	0	0		0	0		0
07/05/2007	L'ESTIVAL (CAP)	4	0	0		0	0		
09/08/2007	L'ESTIVAL (CAP)	1	0	0		0	0		
13/05/2008	L'ESTIVAL (CAP)			0		0	0		
28/05/2009	L'ESTIVAL (CAP)			0		0	0		
30/09/2009	L'ESTIVAL (CAP)			0		0	0		
09/06/2010	L'ESTIVAL (CAP)			0		0	0		
17/08/2010	L'ESTIVAL (CAP)			0		0	0		
22/06/2011	L'ESTIVAL (CAP)					0	0		
28/06/2016	L'ESTIVAL (CAP)					<1	<1		

ST ALYRE D'ARLAI	NC - LES MONTILLES (SECOURS)	GT22	GT37	CTF	CTHF	STRF	ECOLI	ANAE	BSIR
		germes totaux à 22 °C	germes totaux à 37 °C	coliformes totaux	coliformes thermotolérants	entérocoques	escherichia coli	bactéries ananaérobies	bactérie et spore anaérobies sulfito- réductrices y compris les spores
		(UFC/ml)	(UFC/ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/20 ml)	(UFC/100 ml)
Normes eau brute	Limite qualité					10000/100 ml	20000/100 ml		
	Limite qualité					0/100 ml	0/100 ml		
Normes eau mise en distribution	Référence qualité		un rapport de 10 valeur habituelle	0/100ml	0/100ml				0/100ml
26/10/2000	LES MONTILLES	13	0	12	12	4		0	
10/06/2004	LES MONTILLES	6	2	0		0	0		
24/08/2006	LES MONTILLES	15	0	3		2	3		0
30/06/2011	LES MONTILLES					0	0		

ST ALYRE D'ARLAN	NC - PALLAYES OUEST	GT22	GT37	CTF	CTHF	STRF	ECOLI	ANAE	BSIR
		germes totaux à 22 °C	germes totaux à 37 °C	coliformes totaux	coliformes thermotolérants	entérocoques	escherichia coli	bactéries ananaérobies	bactérie et spore anaérobies sulfito- réductrices y compris les spores
		(UFC/ml)	(UFC/ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/20 ml)	(UFC/100 ml)
Normes eau brute	Limite qualité					10000/100 ml	20000/100 ml		
	Limite qualité					0/100 ml	0/100 ml		
Normes eau mise en distribution	Référence qualité		un rapport de 10 valeur habituelle	0/100ml	0/100ml				0/100ml
26/10/2000	DRAIN 1 (GAUCHE)	38	0	10	10	0		0	
26/10/2000	DRAIN 2 (FACE CENTRE)	15	0	2	2	2		0	
26/10/2000	DRAIN 3 (FACE DROITE)	0	0	7	7	0		1	
11/08/2005	PALLAYES OUEST					0	0		
07/10/2008	PALLAYES OUEST			2		0	0		0
22/10/2010	PALLAYES OUEST					0	0		
21/06/2012	PALLAYES OUEST					0	1		
28/06/2016	PALLAYES OUEST					<1	<1		

ST ALYRE D'ARLAN	NC - PALLAYES EST - CHARDET BAS	GT22	GT37	CTF	CTHF	STRF	ECOLI	ANAE	BSIR
		germes totaux à 22°C	germes totaux à 37 °C	coliformes totaux	coliformes thermotolérants	entérocoques	escherichia coli	bactéries ananaérobies	bactérie et spore anaérobies sulfito- réductrices y compris les spores
		(UFC/ml)	(UFC/ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/20 ml)	(UFC/100 ml)
Normes eau brute	Limite qualité					10000/100 ml	20000/100 ml		
	Limite qualité					0/100 ml	0/100 ml		
Normes eau mise en distribution	Référence qualité		un rapport de 10 valeur habituelle	0/100ml	0/100ml				0/100ml
26/10/2000	DRAIN 1 (FACE)	0	0	2	2	0		0	
26/10/2000	DRAIN 2 (DROITE AU FOND)	0	0	10	6	0		0	
10/06/2004	PALLAYES EST - CHARDET BAS	6	2	0		0	0		
04/11/2004	PALLAYES EST - CHARDET BAS	14	0	2		0	2		
07/10/2008	PALLAYES EST - CHARDET BAS			2		0	2		0

		B							
NOVACELLES - BO	YER 1	GT22	GT37	CTF	CTHF	STRF	ECOLI	ANAE	BSIR
		germes totaux à 22 °C	germes totaux à 37 °C	coliformes totaux	coliformes thermotolérants	entérocoques	escherichia coli	bactéries ananaérobies	bactérie et spore anaérobies sulfito- réductrices y compris les spores
		(UFC/ml)	(UFC/ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/20 ml)	(UFC/100 ml)
Normes eau brute	Limite qualité					10000/100 ml	20000/100 ml		
	Limite qualité					0/100 ml	0/100 ml		
Normes eau mise en distribution	Référence qualité		un rapport de 10 valeur habituelle	0/100ml	0/100ml				0/100ml
23/10/2000	BOYER 1	10	3	0	0	0		0	
10/06/2004	BOYER 1	5	0	0		0	0		
17/05/2005	BOYER 1					0	0		
07/10/2008	BOYER 1			42		0	0		0
22/10/2010	BOYER 1					0	0		
28/06/2016	BOYER 1					<1	<1		

FORAGE DE NOVA	ACELLES	GT22	GT37	CTF	CTHF	STRF	ECOLI	ANAE	BSIR
		germes totaux à 22°C	germes totaux à 37 °C	coliformes totaux	coliformes thermotolérants	entérocoques	escherichia coli	bactéries ananaérobies	bactérie et spore anaérobies sulfito- réductrices y compris les spores
		(UFC/ml)	(UFC/ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(UFC/20 ml)	(UFC/100 ml)
Normes eau brute	Limite qualité					10000/100 ml	20000/100 ml		
	Limite qualité					0/100 ml	0/100 ml		
Normes eau mise en distribution	Référence qualité		un rapport de 10 valeur habituelle	0/100ml	0/100ml				0/100ml
23/05/2016	FORAGE DE NOVACELLES			<1		<1	<1		<1
28/07/2016	FORAGE DE NOVACELLES			<1		<1	<1		
10/10/2016	FORAGE DE NOVACELLES			<1		<1	<1		
10/05/2017	FORAGE DE NOVACELLES			<1		<1	<1		<1

SYNTHESE DES RESULTATS D'ANALYSES PHYSICO-CHIMIQUES SUR LES CAPTAGES DU SIAEP DU HAUT LIVRADOIS

	DANSADOUR	CDT25	PH	TH	TURB	MOAC	СОТ	NH4	NO3	NO2	AS	DTI	ACTITR	RALPHA2
		Conductivité à	DII	ali in a k d	4		Carbone	Ammonium	Nikoska	Allenia -	A	Dose totale	Activité tritium	Activité alpha
		25°C	PH	dureté	turbidité	oxydabilité	Organique Total	Ammonium	Nitrate	Nitrite	Arsenic	indicative	3H	globale
	Unité	(μS/cm)	à 20°C	(°f)	(NTU/NFU)	(mg O2/I)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	mSv/an	Bq/I	Bq/I
Normes eau brute	Limite qualité						10	4	100		100			
Normes eau mise en	Limite qualité								50	0,2	10	0,1		
distribution	Référence qualité	≥200 et ≤1100	≥6,5 et ≤9		2		2	0,1						
24/10/2000	DANSADOUR	235	7,6	1,9	<0,2	<0,5		<0,10	6,1	<0,050	<5			
14/09/2004	DANSADOUR	70,2	5,8	2,5	0,3	-,-	0,5	<0,05	4,5	<0,003				
11/08/2005	DANSADOUR	70,1	6,1	1,8	<0,2		0,55	<0,05	3,8	<0,003				
24/08/2006	DANSADOUR	72,1		2	<0,2	<0,5	0,55	<0,05	3,9	<0,003	<5,0	<0,1	<8,80	<0,02
09/08/2007 30/09/2009	DANSADOUR DANSADOUR	78,4 74,2	5,95 6,05	1,8 1,8	0,7		0,72 0,32	0,06 <0,05	3,8 4,2	<0,003 <0,003				
17/08/2010	DANSADOUR	76,4	6,05	2			0,32	<0,05	4,2	<0,003				
22/06/2011	DANSADOUR	72,7	6,2	2			0,8	<0,05	5,2	<0,003	<0,2			
Réf : arrêté du 11 jai	nvier 2007 relatif aux limites et référe	nces de qualité de	s eaux brutes et	des eaux destiné	es à la consomm	ation humaine		·			·	·		
	Mini	70,1	5,8	1,8	<0,2		0,3	<0,05	3,8	<0,003	<0,2			
	Maxi	235,0	7,6	2,5	0,7	<0,5	0,8	<0,10	6,1	<0,050	<5,0	<0,1	<8,80	<0,02
	Moyenne	93,6	6,3	2,0			0,6		4,5					
		CDT25	PH	TH	TURB	MOAC	СОТ	NH4	NO3	NO2	AS	DTI	ACTITR	RALPHA2
MEDEYROLLES -	LA GARDE (LE SUC DE LAIR)	Conductivité à					Carbone					Dose totale	Activité tritium	Activité alpha
WEDETHOLLES	EN GAMBE (EE 500 BE EAM)	25°C	PH	dureté	turbidité	oxydabilité	Organique Total	Ammonium	Nitrate	Nitrite	Arsenic	indicative	3H	globale
	Unité	(μS/cm)	à 20°C	(°f)	(NTU/NFU)	(mg O2/I)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	mSv/an	Bq/I	Bq/I
Norman		,		, ,	. , -,	. 5 - 77				. 3, ,			,	,
Normes eau brute	Limite qualité						10	4	100		100			
Normes eau mise en	Limite qualité								50	0,2	10	0,1		
Normes eau mise en distribution	n///	>200												
	Référence qualité	≥200 et ≤1100	≥6,5 et ≤9		2		2	0,1						
24/10/2000	LA GARDE (LE SUC DE LAIR)	66,8	5,9	1,9	<0,2	<0,5		<0,10	9,9	<0,050	<5			
14/09/2004 11/08/2005	LA GARDE (LE SUC DE LAIR)	67,6	6,1	2,6 1,1	<0,2 <0,2	-0 F	0,4	<0,05 <0,05	4,1 1	<0,003	<5	N.M.		N.M.
16/05/2006	LA GARDE (LE SUC DE LAIR) LA GARDE (LE SUC DE LAIR)	44,1 52,1	5,9	2,2	<0,2	<0,5	0,35 0,6	<0,05	3,9	<0,003 <0,003	\3	IN.IVI.		IN.IVI.
07/05/2007	LA GARDE (LE SUC DE LAIR)	63,3	3,3	2	0,5		0,41	<0,05	7	<0,003	<5,0	<0,1	<7,20	<0,03
13/05/2008	LA GARDE (LE SUC DE LAIR)	52,9	6	1,7			0,58	0,05	4,5	0,003				
06/10/2008	LA GARDE (LE SUC DE LAIR)	48,1										<0,1	<8,10	<0,02
02/06/2009	LA GARDE (LE SUC DE LAIR)	46,6	6,5	1,5			0,42	<0,05	2	<0,003				
17/08/2010 22/06/2011	LA GARDE (LE SUC DE LAIR) LA GARDE (LE SUC DE LAIR)	48,9 44,7	6,1 6,3	1,4 1			0,6 0,7	<0,05 <0,05	3,1 0,9	<0,003 <0,003	<0,2			
	nvier 2007 relatif aux limites et référe		·		es à la consomm	ation humaine	0,7	\0,03	0,9	<0,003	\0, 2			
•	Mini	44,1	5,9	1,0	<0,2		0,4	<0,05	0,9	<0,003	<0,2		<7,20	<0,02
		67.6							0.0			-0.1	-0.10	<0,03
	Maxi	67,6	6,5	2,6	0,5	<0,5	0,7	<0,10	9,9	<0,050	<5,0	<0,1	<8,10	\0,03
	Maxi Moyenne	53,5	6,5 6,1	2,6 1,7	0,5	<0,5	0,7 0,5	<0,10	4,0	<0,050	<5,0	<0,1	<8,10	\0,03
		53,5	6,1	1,7			0,5		4,0					
MEDEVROLLES	Moyenne	53,5 CDT25			0,5	<0,5	0,5 COT	<0,10 NH4		<0,050 NO2	<5,0 AS	DTI	ACTITR	RALPHA2
MEDEYROLLES -		53,5 CDT25 Conductivité à	6,1	1,7			O,5 COT Carbone		4,0			DTI Dose totale	ACTITR Activité tritium	RALPHA2 Activité alpha
MEDEYROLLES -	Moyenne SOUS LES FAYARDS	53,5 CDT25 Conductivité à 25°C	6,1 PH PH	1,7 TH dureté	TURB turbidité	MOAC oxydabilité	O,5 COT Carbone Organique Total	NH4 Ammonium	4,0 NO3 Nitrate	NO2 Nitrite	AS Arsenic	DTI Dose totale indicative	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
	Moyenne SOUS LES FAYARDS Unité	53,5 CDT25 Conductivité à	6,1 PH	1,7	TURB	MOAC	O,5 COT Carbone Organique Total (mg/l)	NH4 Ammonium (mg/l)	A,0 NO3 Nitrate (mg/l)	NO2	AS Arsenic (μg/l)	DTI Dose totale	ACTITR Activité tritium	RALPHA2 Activité alpha
MEDEYROLLES - :	Moyenne SOUS LES FAYARDS	53,5 CDT25 Conductivité à 25°C	6,1 PH PH	1,7 TH dureté	TURB turbidité	MOAC oxydabilité	O,5 COT Carbone Organique Total	NH4 Ammonium	4,0 NO3 Nitrate	NO2 Nitrite	AS Arsenic	DTI Dose totale indicative	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
Normes eau brute	Moyenne SOUS LES FAYARDS Unité	53,5 CDT25 Conductivité à 25°C	6,1 PH PH	1,7 TH dureté	TURB turbidité	MOAC oxydabilité	O,5 COT Carbone Organique Total (mg/l)	NH4 Ammonium (mg/l)	A,0 NO3 Nitrate (mg/l)	NO2 Nitrite (mg/l)	AS Arsenic (μg/l)	DTI Dose totale indicative	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
Normes eau brute	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité	53,5 CDT25 Conductivité à 25°C (μS/cm)	6,1 PH PH à 20°C	1,7 TH dureté	TURB turbidité (NTU/NFU)	MOAC oxydabilité	O,5 COT Carbone Organique Total (mg/l) 10	NH4 Ammonium (mg/l) 4	4,0 NO3 Nitrate (mg/l) 100	NO2 Nitrite	AS Arsenic (µg/l) 100	DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
Normes eau brute	Moyenne SOUS LES FAYARDS Unité Limite qualité	53,5 CDT25 Conductivité à 25°C	6,1 PH PH	1,7 TH dureté	TURB turbidité	MOAC oxydabilité	O,5 COT Carbone Organique Total (mg/l)	NH4 Ammonium (mg/l)	4,0 NO3 Nitrate (mg/l) 100	NO2 Nitrite (mg/l)	AS Arsenic (µg/l) 100	DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 24/10/2000	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6	6,1 PH PH à 20°C	1,7 TH dureté ('f)	TURB turbidité (NTU/NFU) 2 <0,2	MOAC oxydabilité (mg O2/I) <0,5	O,5 COT Carbone Organique Total (mg/I) 10	NH4 Ammonium (mg/l) 4 0,1 <0,10	4,0 NO3 Nitrate (mg/l) 100 50	NO2 Nitrite (mg/l) 0,2 <0,050	AS Arsenic (µg/l) 100 10	DTI Dose totale indicative mSv/an 0,1	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS SOUS LES FAYARDS	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118	6,1 PH PH à 20°C ≥6,5 et ≤9	1,7 TH dureté (°f)	TURB turbidité (NTU/NFU)	MOAC oxydabilité (mg O2/I)	O,5 COT Carbone Organique Total (mg/l) 10	NH4 Ammonium (mg/l) 4	4,0 NO3 Nitrate (mg/l) 100 50	NO2 Nitrite (mg/l)	AS Arsenic (µg/l) 100	DTI Dose totale indicative mSv/an 0,1 <0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9	6,1 PH PH à 20°C ≥6,5 et ≤9 6	1,7 TH dureté ('f) 1,8 3	TURB turbidité (NTU/NFU) 2 <0,2	MOAC oxydabilité (mg O2/I) <0,5	O,5 COT Carbone Organique Total (mg/l) 10 2 1,02	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003	AS Arsenic (μg/l) 100 10 <5<5,0	DTI Dose totale indicative mSv/an 0,1	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS SOUS LES FAYARDS	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118	6,1 PH PH à 20°C ≥6,5 et ≤9	1,7 TH dureté ('f)	TURB turbidité (NTU/NFU) 2 <0,2	MOAC oxydabilité (mg O2/I) <0,5	O,5 COT Carbone Organique Total (mg/I) 10	NH4 Ammonium (mg/l) 4 0,1 <0,10	4,0 NO3 Nitrate (mg/l) 100 50	NO2 Nitrite (mg/l) 0,2 <0,050	AS Arsenic (µg/l) 100 10	DTI Dose totale indicative mSv/an 0,1 <0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85	1,7 TH dureté ('f) 1,8 3	TURB turbidité (NTU/NFU) 2 <0,2	MOAC oxydabilité (mg O2/I) <0,5	O,5 COT Carbone Organique Total (mg/I) 10 2 1,02 0,41	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003	AS Arsenic (μg/l) 100 10 <	DTI Dose totale indicative mSv/an 0,1 <0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 s eaux brutes et	1,7 TH dureté ('f) 1,8 3 2 3 des eaux destiné	TURB turbidité (NTU/NFU) 2 <0,2 0,4 ies à la consomm	MOAC oxydabilité (mg O2/l) <0,5 1,5	0,5 COT Carbone Organique Total (mg/I) 10 2 1,02 0,41 0,5 <0,5	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,1	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003	AS Arsenic (μg/l) 100 10 <	DTI Dose totale indicative mSv/an 0,1 <0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS NOUE 2007 relatif aux limites et référe Mini	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 s eaux brutes et 5,7	1,7 TH dureté ('f) 1,8 3 2 3 des eaux destiné 1,8	TURB turbidité (NTU/NFU) 2 <0,2 0,4 ses à la consomm <0,2	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5	0,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,1	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003	AS Arsenic (μg/l) 100 10 <5,0 <5,0 <1,1 <1,00	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS NOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS MORE TOOT relatif aux limites et réfère Mini Maxi	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 noces de qualité de 63,6 118,0	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 se eaux brutes et 5,7 6,0	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0	TURB turbidité (NTU/NFU) 2 <0,2 0,4 ies à la consomm	MOAC oxydabilité (mg O2/l) <0,5 1,5	0,5 COT Carbone Organique Total (mg/I) 10 2 1,02 0,41 0,5 <0,5	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,10 14,3	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003	AS Arsenic (μg/l) 100 10 <	DTI Dose totale indicative mSv/an 0,1 <0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS NOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS Novier 2007 relatif aux limites et référe Mini	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 s eaux brutes et 5,7	1,7 TH dureté ('f) 1,8 3 2 3 des eaux destiné 1,8	TURB turbidité (NTU/NFU) 2 <0,2 0,4 ses à la consomm <0,2	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5	0,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,1	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003	AS Arsenic (μg/l) 100 10 <5,0 <5,0 <1,1 <1,00	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MOYEN ES FAYARDS	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 noces de qualité de 63,6 118,0	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 se eaux brutes et 5,7 6,0	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0	TURB turbidité (NTU/NFU) 2 <0,2 0,4 ses à la consomm <0,2	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5	0,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,10 14,3	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003	AS Arsenic (μg/l) 100 10 <5,0 <5,0 <1,1 <1,00	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MOYEN ES FAYARDS	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,8 5,7 es eaux brutes et 5,8 PH	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5	TURB turbidité (NTU/NFU) 2 <0,2 0,4 ies à la consomm <0,2 0,4 TURB	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC	0,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4	9,6 14,3 9,7 9,3 8,1 8,10 14,3 10,2	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 NO2	AS Arsenic (μg/l) 100 10 <5 <5,0 <1,1 <1,00 <1,00 <5,0 AS	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1	ACTITR Activité tritium 3H Bq/I <8,00	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MOYEN ES FAYARDS	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 es eaux brutes et 5,7 6,0 5,8	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5	TURB turbidité (NTU/NFU) 2 <0,2 0,4 es à la consomm <0,2 0,4	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5	0,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,010	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,10 14,3 10,2	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	AS Arsenic (μg/l) 100 10 45 <5,0 <5,0 <1,00 <1,00 <5,0	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 RALPHA2
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MOYEN ES FAYARDS	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,8 5,7 es eaux brutes et 5,8 PH	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5	TURB turbidité (NTU/NFU) 2 <0,2 0,4 ies à la consomm <0,2 0,4 TURB	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC	0,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4	9,6 14,3 9,7 9,3 8,1 8,10 14,3 10,2	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 NO2	AS Arsenic (μg/l) 100 10 <5 <5,0 <1,1 <1,00 <1,00 <5,0 AS	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <0,03 Activité alpha globale RALPHA2 Activité alpha
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS NOUS LES FAYARDS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS LES FA	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,7 6,0 5,8 PH PH	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté	TURB turbidité (NTU/NFU) 2 <0,2 0,4 ies à la consomm <0,2 0,4 TURB turbidité	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité	O,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l)	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l)	9,6 14,3 9,7 9,3 8,1 8,10 14,3 10,2 NO3 Nitrate	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 NO2 Nitrite	AS Arsenic (µg/l) 100 10 10 <5 <5,0 <1,10 <1,00 <5,0 AS Arsenic (µg/l)	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <activité alpha="" globale<="" td=""></activité>
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS MOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS MOYER 2007 relatif aux limites et référe Mini Maxi Moyenne LE LAVOIR	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,7 6,0 5,8 PH PH	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté	TURB turbidité (NTU/NFU) 2 <0,2 0,4 ies à la consomm <0,2 0,4 TURB turbidité	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité	O,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,1 8,10 14,3 10,2 NO3 Nitrate	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 NO2 Nitrite	AS Arsenic (µg/l) 100 10 <5 <5,0 <1,00 <1,00 <5,0 AS Arsenic	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <activité alpha="" globale<="" td=""></activité>
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS NOUS LES FAYARDS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS LES FA	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,7 6,0 5,8 PH PH	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté	TURB turbidité (NTU/NFU) 2 <0,2 0,4 ies à la consomm <0,2 0,4 TURB turbidité	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité	O,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l)	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l)	9,6 14,3 9,7 9,3 8,1 8,10 14,3 10,2 NO3 Nitrate	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 NO2 Nitrite	AS Arsenic (µg/l) 100 10 10 <5 <5,0 <1,10 <1,00 <5,0 AS Arsenic (µg/l)	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <activité alpha="" globale<="" td=""></activité>
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MOYER 2007 relatif aux limites et référe Mini Maxi Moyenne LE LAVOIR Unité Limite qualité Limite qualité	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C (μS/cm)	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 es eaux brutes et 5,7 6,0 5,8 PH PH à 20°C	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté	TURB turbidité (NTU/NFU) 2 <0,2 0,4 6es à la consomm <0,2 0,4 TURB turbidité (NTU/NFU)	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité	O,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,1 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,0050 NO2 Nitrite (mg/l)	AS Arsenic (μg/l) 100 10 10 <5 <5,0 <1,10 <1,00 <5,0 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <activité alpha="" globale<="" td=""></activité>
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS MOYEN LES FAYARDS MOYEN LES FAYARDS L	53,5 CDT25 Conductivité à 25°C	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,8 5,7 6,0 5,8 PH PH à 20°C	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté	TURB turbidité (NTU/NFU) 2 <0,2 0,4 es à la consomm <0,2 0,4 TURB turbidité (NTU/NFU)	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité	O,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l)	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l)	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,1 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,0050 NO2 Nitrite (mg/l)	AS Arsenic (μg/l) 100 10 10 <5 <5,0 <1,10 <1,00 <5,0 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <activité alpha="" globale<="" td=""></activité>
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - Normes eau brute Normes eau mise en distribution 24/10/2000	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS NOIS LES FAYARDS SOUS LES FAYARDS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS LES FAYARDS Movier 2007 relatif aux limites et référe Mini Maxi Moyenne LE LAVOIR Unité Limite qualité Limite qualité Référence qualité DRAIN 1 EST ELOIGNE (CHELLE	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 noces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 54,7	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 6,0 5,8 PH PH à 20°C	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté	TURB turbidité (NTU/NFU) 2 <0,2 0,4 es à la consomm <0,2 0,4 TURB turbidité (NTU/NFU) 2 <0,2	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité	O,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,1 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,0050 NO2 Nitrite (mg/l)	AS Arsenic (μg/l) 100 10 10 <5 <5,0 <1,10 <1,00 <5,0 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 Activité alpha globale
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS MOYEN LES FAYARDS MOYEN LES FAYARDS L	53,5 CDT25 Conductivité à 25°C	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,8 5,7 6,0 5,8 PH PH à 20°C	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté	TURB turbidité (NTU/NFU) 2 <0,2 0,4 es à la consomm <0,2 0,4 TURB turbidité (NTU/NFU)	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité	O,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,1 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,0050 NO2 Nitrite (mg/l)	AS Arsenic (μg/l) 100 10 10 <5 <5,0 <1,10 <1,00 <5,0 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 Activité alpha globale
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai MEDEYROLLES - Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS MOYER SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS MOYER SOUS LES FAYARDS LES FAYARDS MOYER SOUS LES FAYARDS MOYER SOUS LES FAYARDS LES FAYARDS MOYER SOUS LES FAYARDS LIMITE SOUS LES FAYARDS MOYER SOUS LES FAYARDS LIMITE SOUS LES FAYARDS LIMITE SOUS LES FAYARDS LE LAVOIR Unité Limite qualité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX)	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 106,2 107,3 107,3 108 de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 54,7 49,7	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 6,0 5,8 PH PH à 20°C ≥6,5 et ≤9 6,2 6	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté	TURB turbidité (NTU/NFU) 2 <0,2 0,4 Es à la consomm. <0,2 0,4 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 <0,2	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité	O,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,1 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,0050 NO2 Nitrite (mg/l)	AS Arsenic (μg/l) 100 10 10 <5 <5,0 <1,10 <1,00 <5,0 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 Activité alpha globale
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai MEDEYROLLES - Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 14/09/2004	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MINI Maxi Moyenne LE LAVOIR Unité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR LE LAVOIR	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 54,7 49,7 55,5 53,9 63,1	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 6,0 5,8 PH PH à 20°C ≥6,5 et ≤9 6,2 6 6,1	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté (°f)	TURB turbidité (NTU/NFU) 2 <0,2 0,4 Es à la consomm <0,2 0,4 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 <0,2 <0,2	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité (mg O2/l)	O,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,1 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100 50	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,0050 NO2 Nitrite (mg/l) 0,2	AS Arsenic (µg/l) 100 10 10 <5 <5,0 <1,10 <1,00 <5,0 AS Arsenic (µg/l) 100 10	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an 0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <0,03 Activité alpha globale Bq/I Bq/I Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai MEDEYROLLES - Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MINI Maxi Moyenne LE LAVOIR Limite qualité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR LE LAVOIR LE LAVOIR LE LAVOIR LE LAVOIR	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 54,7 49,7 55,5 53,9 63,1 63,7	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 6,0 5,8 PH PH à 20°C ≥6,5 et ≤9 6,1 6,1 5,9	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté (°f)	TURB turbidité (NTU/NFU) 2 <0,2 0,4	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité (mg O2/l) <0,5 <0,5 <0,5	O,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10 2	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100 50 5,7 4,4	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,0050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,050 <0,050 <0,050	AS Arsenic (μg/l) 100 10 10 <5,0 <5,0 <1,00 <5,0 41,00 <1,00 <5,0 In the second of the s	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <activité activité="" alpha="" globale="" globale<="" ralpha2="" td=""></activité>
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai MEDEYROLLES - Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008 27/07/2009	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS Mini Maxi Moyenne LE LAVOIR Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 54,7 49,7 55,5 53,9 63,1 63,7 63	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 6,0 5,8 PH PH à 20°C ≥6,5 et ≤9 6,1 6,1 5,9 5,95	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté (°f) 1,5 1,5 1,5	TURB turbidité (NTU/NFU) 2 <0,2 0,4	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité (mg O2/l) <0,5 <0,5 <0,5	0,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10 2	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100 50 5,7 4,4	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	AS Arsenic (μg/l) 100 10 10 <5,0 <5,0 1,1 <1,00 <5,0 AS Arsenic (μg/l) 100 10 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an 0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <0,03 Activité alpha globale Bq/I Bq/I Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai MEDEYROLLES - Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008 27/07/2009 06/10/2011	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS Mini Maxi Moyenne LE LAVOIR Unité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118,0 97,6 118,0 97,6 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 54,7 49,7 55,5 53,9 63,1 63,7 63 66,5	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 6,0 5,8 PH PH à 20°C ≥6,5 et ≤9 6,1 6,1 5,9 5,95 5,85	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté (°f)	TURB turbidité (NTU/NFU) 2 <0,2 0,4	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité (mg O2/l) <0,5 <0,5 <0,5	0,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10 2 0,41 0,5 <0,5	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100 50 5,7 4,4 5,2 5,5	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	AS Arsenic (μg/l) 100 10 45,0 41,00 <5,0 AS Arsenic (μg/l) 100 AS </td <td>DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an 0,1</td> <td>ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I</td> <td>RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <0,03 Activité alpha globale Bq/I Bq/I Activité alpha globale Bq/I</td>	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an 0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <0,03 Activité alpha globale Bq/I Bq/I Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai MEDEYROLLES - Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008 27/07/2009	Moyenne SOUS LES FAYARDS Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS Mini Maxi Moyenne LE LAVOIR Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 54,7 49,7 55,5 53,9 63,1 63,7 63	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 6,0 5,8 PH PH à 20°C ≥6,5 et ≤9 6,1 6,1 5,9 5,95	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté (°f) 1,5 1,5 1,5	TURB turbidité (NTU/NFU) 2 <0,2 0,4	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité (mg O2/l) <0,5 <0,5 <0,5	0,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10 2	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100 50 5,7 4,4	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	AS Arsenic (μg/l) 100 10 45,0 41,00 41,00 5,0 AS Arsenic (μg/l) 100 10 45,0 5,0 5,0 45,0 5,0 5,0 5,0 5,0 6,0 6,0 7,0	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an 0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <0,03 Activité alpha globale Bq/I Bq/I Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai MEDEYROLLES - Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008 27/07/2009 06/10/2011 18/09/2013	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS Mini Maxi Moyenne LE LAVOIR Unité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118,0 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 54,7 49,7 55,5 53,9 63,1 63,7 63 66,5 63,2	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 6,0 5,8 PH PH à 20°C ≥6,5 et ≤9 6,1 6,1 5,9 5,95 5,85	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté (°f) 1,5 1,5 1,5 1,5	TURB turbidité (NTU/NFU) 2 <0,2 0,4	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité (mg O2/l) <0,5 <0,5 <0,5	0,5 COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10 2 0,41 0,5 <0,5	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,010 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100 50 5,7 4,4 5,2 5,5 4,8	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,050 <0,050 <0,050 <0,050 <0,050 <0,003 <0,003 <0,003 <0,003	AS Arsenic (µg/l) 100 10 45,0 41,00 41,00 5,0 AS Arsenic (µg/l) 100 10 45,0 5,0 45,0 5,0 6,0 7,0	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an 0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <0,03 Activité alpha globale Bq/I Bq/I Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai MEDEYROLLES - Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2001 18/09/2013 06/10/2015 20/06/2017	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS Mini Maxi Moyenne LE LAVOIR Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118,9 97,9 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 54,7 49,7 55,5 53,9 63,1 63,7 63 66,5 63,2 64,5 65,6 nces de qualité de nces de nces de qualité de nces de nces de nces de nces de nces de qualité de nces de qual	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 6,0 5,8 PH PH à 20°C ≥6,5 et ≤9 6 6,1 5,9 5,95 5,85 5,55	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté (°f) 1,5 1,5 1,5 2 6,81 6,1 des eaux destiné	TURB turbidité (NTU/NFU) 2 <0,2 0,4 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 <0,2 <0,2 <0,2 <0,2 <	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité (mg O2/l) <0,5 <0,5 <0,5 <0,5	COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10 2 0,41 0,5 <0,5	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,010 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100 50 5,7 4,4 5,2 5,5 4,8 5,3 6,6	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	AS Arsenic (µg/l) 100 10 45 5,0 1,1 1,00 5,0 1,00 41,00 5,0 10 10 10 10 10 10 25 5 5 5 4 100 2 2 1,00 2 3 3 4 3 4 4 5 6 6 8 9 8 9<	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an 0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <0,03 Activité alpha globale Bq/I Bq/I Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai MEDEYROLLES - Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2001 18/09/2013 06/10/2015 20/06/2017	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS Mini Maxi Moyenne LE LAVOIR Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118,9 97,9 92,8 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 54,7 49,7 55,5 53,9 63,1 63,7 63 66,5 63,2 64,5 65,6 nces de qualité de 49,7	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,7 6,0 5,8 PH PH à 20°C ≥6,5 et ≤9 6,1 6,1 5,9 5,95 5,55 see aux brutes et 5,6	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté (°f) 1,5 1,5 1,5 2 6,81 6,1 des eaux destiné 1,0	TURB turbidité (NTU/NFU) 2 <0,2 0,4 es à la consomm <0,2 0,4 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 <0,2 <0,2 <0,2 <0,2	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 (mg O2/l) <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 <0,5 ation humaine	COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10 2 0,41 0,5 <0,5	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,010 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,1 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100 50 5,7 4,4 5,2 5,5 4,8 5,3 6,6 4,4	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	AS Arsenic (µg/l) 100 10 10 <\$5 <\$5,0 <\$1,10 <\$1,00 <\$5,0 AS Arsenic (µg/l) 100 10 25,0 41,00 <\$1,00 <\$1,00 <\$2 <\$2 <\$2 0,2	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an <0,1 <0,1 <0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I <<8,10 <8,10	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <0,03 RALPHA2 Activité alpha globale Bq/I <0,002
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jai MEDEYROLLES - Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2001 18/09/2013 06/10/2015 20/06/2017	Moyenne SOUS LES FAYARDS Unité Limite qualité Référence qualité SOUS LES FAYARDS Mini Maxi Moyenne LE LAVOIR Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	53,5 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 63,6 118,9 97,9 106,2 107,3 nces de qualité de 63,6 118,0 97,6 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 54,7 49,7 55,5 53,9 63,1 63,7 63 66,5 63,2 64,5 65,6 nces de qualité de nces de nces de qualité de nces de nces de nces de nces de nces de qualité de nces de qual	6,1 PH PH à 20°C ≥6,5 et ≤9 6 5,85 5,8 5,7 6,0 5,8 PH PH à 20°C ≥6,5 et ≤9 6 6,1 5,9 5,95 5,85 5,55	1,7 TH dureté (°f) 1,8 3 2 3 des eaux destiné 1,8 3,0 2,5 TH dureté (°f) 1,5 1,5 1,5 2 6,81 6,1 des eaux destiné	TURB turbidité (NTU/NFU) 2 <0,2 0,4 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 <0,2 <0,2 <0,2 <0,2 <	MOAC oxydabilité (mg O2/l) <0,5 1,5 ation humaine <0,5 1,5 MOAC oxydabilité (mg O2/l) <0,5 <0,5 <0,5 <0,5	COT Carbone Organique Total (mg/l) 10 2 1,02 0,41 0,5 <0,5 0,41 1,0 COT Carbone Organique Total (mg/l) 10 2 0,41 0,5 <0,5	NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,010 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	4,0 NO3 Nitrate (mg/l) 100 50 9,6 14,3 9,7 9,3 8,10 14,3 10,2 NO3 Nitrate (mg/l) 100 50 5,7 4,4 5,2 5,5 4,8 5,3 6,6	NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	AS Arsenic (µg/l) 100 10 45 5,0 1,1 1,00 5,0 1,00 41,00 5,0 10 10 10 10 10 10 25 5 5 5 4 100 2 2 1,00 2 3 3 4 3 4 4 5 6 6 8 9 8 9<	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 <0,1 DTI Dose totale indicative mSv/an 0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,03 <0,03 <0,03 <0,03 Activité alpha globale Bq/I Bq/I Activité alpha globale Bq/I

MEDEYROLLES - L	LA MARUE	CDT25	PH	TH	TURB	MOAC	СОТ	NH4	NO3	NO2	AS	DTI	ACTITR	RALPHA2
		Conductivité à	PH	dureté	turbidité	oxydabilité	Carbone	Ammonium	Nitrate	Nitrite	Arsenic	Dose totale	Activité tritium	Activité alpha
		25°C		uurete	turbiate	oxy addince	Organique Total	7.1111101110111	Milate	THETTE	711361116	indicative	3H	globale
	Unité	(μS/cm)	à 20°C	(°f)	(NTU/NFU)	(mg O2/I)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	mSv/an	Bq/l	Bq/l
Normes eau brute	Limite qualité						10	4	100		100			
Maymas agu misa an	Limite qualité								50	0,2	10	0,1		
Normes eau mise en distribution	Référence qualité	≥200 et ≤1100	≥6,5 et ≤9		2		2	0,1						
22/10/2000	•						2	0,1						
23/10/2000 23/10/2000	DRAIN 1 DRAIN 2	76,4 60	6,6 6,2		<0,2 <0,2									
23/10/2000	DRAIN 3	36,9	5,6	0,8	0,3	<0,5		0,06	2	<0,050	<5			
23/10/2000	DRAIN 4	47,6	5,9		<0,2			·						
23/10/2000	DRAIN 5	36,6	5,8		<0,2									
23/10/2000	LA MARUE	43,3	5,9	1,4	0,3	<0,5		<0,10	1,9	<0,050	<5			
10/06/2004	LA MARUE	49,9	5,5	1	<0,2	0,6	0,7	<0,05	3,3	<0,003	<5			
07/10/2008	LA MARUE	52,2	F 7F	4			0.72	0.00	2.2	.0.003	.F.O	<0,1	<8,1	<0,02
27/07/2009 06/10/2011	LA MARUE LA MARUE	53,5 56,8	5,75 5,7	1			0,72 <0,50	0,06 <0,05	3,3	<0,003 <0,003	<5,0 <0,2			1
16/04/2013	LA MARUE	46,8	5,6	1			0,9	<0,05	2,7	<0,003	<1,0			
06/10/2015	LA MARUE	65,5	3,0	6,5			0,7	<0,05	3	<0,003	<2			
20/06/2017	LA MARUE	51,7		5,9			0,4	<0,05	3	<0,02	<2			
	nvier 2007 relatif aux limites et référe		es eaux brutes et		es à la consomm	ation humaine	- /	-,		- / -			1	
•	Mini	36,6	5,5	0,8	<0,2	<0,5	<0,50	<0,05	1,9	<0,003	<0,2			
	Maxi	76,4	6,6	1,4	0,3	0,6	0,9	<0,10	3,3	<0,050	<5,0	<0,1	<8,1	<0,02
	Moyenne	52,1	5,9	2,5			0,7		2,8					
MEDEYROLLES - J	IOUVET	CDT25	PH	TH	TURB	MOAC	COT	NH4	NO3	NO2	AS	DTI	ACTITR	RALPHA2
		Conductivité à	PH	dureté	turbidité	oxydabilité	Carbone	Ammonium	Nitrate	Nitrite	Arsenic	Dose totale	Activité tritium	Activité alpha
		25°C				,	Organique Total					indicative	3H	globale
	Unité	(μS/cm)	à 20°C	(°f)	(NTU/NFU)	(mg O2/I)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	mSv/an	Bq/I	Bq/I
Normes eau brute	Limite qualité						10	4	100		100			
	·													
Normes eau mise en	Limite qualité								50	0,2	10	0,1		
distribution	Référence qualité	≥200 et ≤1100	≥6,5 et ≤9		2		2	0,1						
24/10/2000	DRAIN DROIT	60,3	6,3		<0,2									
24/10/2000	DRAIN GAUCHE	52,9	6,1		<0,2									
24/10/2000	JOUVET	56,1	6,2	1,6	<0,2	<0,5		<0,10	3	<0,050	<5			
14/09/2004	JOUVET	66,2	6,1	2,5	<0,2		0,5	<0,05	2,7	<0,003				
19/10/2004	JOUVET	65,5	6,2		<0,2			<0,05						
11/08/2005	JOUVET	62,7	6,1	2,1	<0,2		<0,20	<0,05	2,4	<0,003				
24/08/2006	JOUVET	66,3	6,2	2,8	<0,2	0.5	0,65	<0,05	2,4	<0,003		0.4		
09/08/2007	JOUVET	61,4	6	2	0,5	<0,5	1,27	<0,05	1,9	<0,003	<5,0	<0,1		<0,04
17/08/2007 31/08/2007	JOUVET	64,8 64,7	5,95		0,2 <0,2			<0,05 <0,05						+
06/10/2008	JOUVET	64,1	3,33		\0,2			\0,03				<0,1	<8,20	<0,02
05/08/2009	JOUVET	63,9	6,1	1,5			<0,2	<0,05	2,3	<0,003			5,25	
17/08/2010	JOUVET	63,7	6,1	2			0,7	<0,05	2,1	<0,003				
21/06/2012	JOUVET	60,9	5,85	2			0,8	<0,05	1,6	<0,003	<1,0			
Réf : arrêté du 11 jan	nvier 2007 relatif aux limites et référe				es à la consomm	ation humaine								
	Mini	52,9	5,9	1,5	<0,2		<0,2	<0,05	1,6	<0,003	<1,0	<0,1		<0,02
	Maxi	66,3	6,3	2,8	0,5	<0,5	1,3	<0,10	3,0	<0,050	<5,0	<0,1	<8,20	<0,04
	Moyenne	62,4	6,1	2,1	0,4		0,8		2,3					
MEDEYROLLES - L	I 'ECTIVAI	CDT25	PH	TH	TURB	MOAC	СОТ	NH4	NO3	NO2	AS	DTI	ACTITR	RALPHA2
WIEDETROLLES - L	LESTIVAL		rn	111	TOND	IVIOAC		INT14	1103	NOZ	AS			
		Conductivité à 25°C	PH	dureté	turbidité	oxydabilité	Carbone Organique Total	Ammonium	Nitrate	Nitrite	Arsenic	Dose totale indicative	Activité tritium 3H	Activité alpha globale
	11-1-1		`	(0.0)	(, as (1)		, n	, 10	, 10	. (1)			
	Unité	(μS/cm)	à 20°C	(°f)	(NTU/NFU)	(mg O2/I)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	mSv/an	Bq/I	Bq/I
Normes eau brute	Limite qualité						10	4	100		100			
Normas agu miss	Limite qualité								50	0,2	10	0,1		
Normes eau mise en distribution														
	Référence qualité	≥200 et ≤1100	≥6,5 et ≤9		2		2	0,1						
24/10/2000	L'ESTIVAL (CAP)	44,6	6	1,1	<0,2	<0,5]	<0,10	1,6	<0,050	<5			
, 10, 2000	LESTIVAL (CAL)	77,0	J	-,-	٠٠,۷	٠٥,٥		~0,10	1,0	10,000	,			
10/06/2004	L'ESTIVAL (CAP)	43	5,5	10,4	<0,2		0,75	<0,05	1	<0,003				
14/09/2004	L'ESTIVAL (CAP)	55	5,9	2,4	<0,2		0,4	<0,05	1,4	<0,003				<u> </u>
04/11/2004	L'ESTIVAL (CAP) L'ESTIVAL (CAP)	52,9	5,7	1,5	0,3		0,6	<0,05	2,5	<0,003			1	1
17/05/2005 11/08/2005	L'ESTIVAL (CAP)	47,9 50,1	6	1,2 1,7	<0,2 <0,2		0,7 0,45	<0,05 <0,05	1,3 1,3	<0,003 <0,003				1
16/05/2006	L'ESTIVAL (CAP)	48,4	5,8	1,7	<0,2		0,45	<0,05	1,3	<0,003				
24/08/2006	L'ESTIVAL (CAP)	52,8	-,~	1	<0,2	<0,5	0,7	<0,05	1,2	<0,003	<5,0	<0,1	<9,00	<0,02
07/05/2007	L'ESTIVAL (CAP)	52,6	6	0,9	0,4		0,4	<0,05	1,5	<0,003				
09/08/2007	L'ESTIVAL (CAP)	51,8		1	0,2		0,56	<0,05	1,6	<0,003	<5,0	<0,1	<7,30	<0,03
13/05/2008	L'ESTIVAL (CAP)	50,6	5,85	1,4			0,5	<0,05	2	<0,003				
28/05/2009	L'ESTIVAL (CAP)	50,7	6	1,2			0,5	<0,05	1,4	0,003				ļ
30/09/2009	L'ESTIVAL (CAP)	52,7	6	1,2			0,48	<0,05	1,2	<0,003				1
09/06/2010 17/08/2010	L'ESTIVAL (CAP)	53,1	5,75 5,95	1 1 2			0,8 0,7	<0,05	2,1	<0,003				1
22/06/2011	L'ESTIVAL (CAP) L'ESTIVAL (CAP)	55,2 55,1	6,1	1,2 1			0,7	<0,05 <0,05	2,3 2,2	<0,003 <0,003	<0,2			
28/06/2011	L'ESTIVAL (CAP)	52,8	0,1	5,9			0,7	<0,05	2,2	<0,003	<2			-
	nvier 2007 relatif aux limites et référe		es eaux brutes et		es à la consomm	ation humaine	- / -	-,	,	- /	=		1	<u> </u>
	Mini	43,0	5,5	0,9	<0,2		0,4	<0,05	1,0	<0,003	<0,2		<7,30	<0,02
	Maxi	55,2	6,1	10,4	0,4		0,9	<0,10	2,5	<0,050	<5,0	<0,1	<9,00	<0,03
	Moyenne	51,1	5,9	2,1			0,6		1,6					
														· · · · · · · · · · · · · · · · · · ·

		CDT25	PH	TH	TURB	MOAC	СОТ	NH4	NO3	NO2	AS	DTI	ACTITR	RALPHA2
	INC - LES MONTILLES	Conductivité à					Carbone					Dose totale	Activité tritium	Activité alpha
(SECOURS)		25°C	PH	dureté	turbidité	oxydabilité	Organique Total	Ammonium	Nitrate	Nitrite	Arsenic	indicative	3H	globale
	Unité	(μS/cm)	à 20°C	(°f)	(NTU/NFU)	(mg O2/I)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	mSv/an	Bq/I	Bq/I
N		,		. ,	. , ,	, , , ,		4				·		
Normes eau brute	Limite qualité						10	4	100		100			
	Limite qualité								50	0,2	10	0,1		
Normes eau mise en distribution														
	Référence qualité	≥200 et ≤1100	≥6,5 et ≤9		2		2	0,1						
26/10/2000	LES MONTILLES	43,1	5,9	1,3	<0,2	<0,5		<0,10	2,3	<0,050	6			
28/03/2002	LES MONTILLES										7			
10/06/2004	LES MONTILLES	45,9	5,5	1,7	0,3		0,4	<0,05	1,8	<0,003				
24/08/2006	LES MONTILLES	55,2	6.25	1	0,4	<0,5	0,3	<0,05	2,4	<0,003	6	<0,1	<8,90	<0,02
30/06/2011	LES MONTILLES	58,7	6,35	2	l		<0,50	<0,05	4,38	<0,003	6,7			
кеј : arrete au 11 jan	nvier 2007 relatif aux limites et référe Mini	43,1	5,5	1,0	es a la consomm <0,2	ation numaine	0,3	<0,05	1,8	<0,003	6,0			
	Maxi	58,7	6,4	2,0	0,4	<0,5	<0,50	<0,03	4,4	<0,050	7,0	<0,1	<8,90	<0,02
	Moyenne	50,7	5,9	1,5	0,4		5,55	5,25	2,7	2,000	6,4		5,55	7,02
				•										
		CDT25	PH	TH	TURB	MOAC	COT	NH4	NO3	NO2	AS	DTI	ACTITR	RALPHA2
ST ALYRE D'ARLA	INC - PALLAYES OUEST	Conductivité à	PH	dureté	turbidité	oxydabilité	Carbone	Ammonium	Nitrate	Nitrite	Arsenic	Dose totale	Activité tritium	Activité alpha
		25°C		durete	turbiaite	Oxydabilite	Organique Total	Ammonium	Withate	Withte	Arsenic	indicative	3Н	globale
	Unité	(μS/cm)	à 20°C	(°f)	(NTU/NFU)	(mg O2/I)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	mSv/an	Bq/I	Bq/I
Normes eau brute	Limite qualité						10	4	100		100			
Normes eau mise en	Limite qualité								50	0,2	10	0,1		
distribution	Difficulty III.	>200	XC 5				_	2 :						
	Référence qualité	≥200 et ≤1100	≥6,5 et ≤9		2		2	0,1						
26/10/2000	DRAIN 1 (GAUCHE)	33,1	5,9		<0,2									
26/10/2000	DRAIN 2 (FACE CENTRE)	48,1	6,1		<0,2									
26/10/2000 26/10/2000	DRAIN 3 (FACE DROITE)	52,1 43,6	5,8 6	1 2	<0,2 <0,2	1 2		ZO 10	1 2	ZO 050	c	1		
28/03/2002	PALLAYES OUEST PALLAYES OUEST	43,0	Ū	1,3	<u,z< td=""><td>1,2</td><td></td><td><0,10</td><td>1,3</td><td><0,050</td><td>6 5</td><td></td><td></td><td></td></u,z<>	1,2		<0,10	1,3	<0,050	6 5			
27/01/2003	DRAIN 1 (GAUCHE)										8			
27/01/2003	DRAIN 2 (FACE CENTRE)										<5			
27/01/2003	DRAIN 3 (FACE DROITE)										<5			
11/08/2005	PALLAYES OUEST	61,3		1,7	0,6	<0,5	0,3	<0,05	1,8	<0,003	<5	N.M.		N.M.
07/10/2008	PALLAYES OUEST	62,4										<0,1	<8,00	0,02
22/10/2010	PALLAYES OUEST	60,6	6,3	2			0,9	<0,05	3,3	0,005	5,8			
21/06/2012 28/06/2016	PALLAYES OUEST PALLAYES OUEST	46,4 62,3	5,7	5,8			1,5 0,5	<0,05 <0,05	2,2 3,2	0,006 <0,02	5 3			
20/06/2017	PALLAYES OUEST	67,1		6,2			0,3	<0,03	3,2	<0,02	3			
	nvier 2007 relatif aux limites et référe		es eaux hrutes et		es à la consomm								J	
-						ation humaine								
	Mini	33,1	5,7	1,0	<0,2	ation humaine <0,5	0,3	<0,05	1,3	<0,003	<5			
	Mini Maxi	33,1 67,1		Ī	1		0,3 1,5	<0,05 <0,10	1,3 3,3	<0,003 0,006	<5 8,0	<0,1	<8,00	0,02
			5,7	1,0	<0,2	<0,5		-				<0,1	<8,00	0,02
	Maxi Moyenne	67,1 53,7	5,7 6,3 6,0	1,0 6,2 3,0	<0,2 0,6	<0,5 1,2	1,5 0,8	<0,10	3,3 2,4	0,006	8,0	,		·
	Махі	67,1 53,7 CDT25	5,7 6,3	1,0 6,2	<0,2	<0,5	1,5 0,8	-	3,3			<0,1 DTI	ACTITR	RALPHA2
ST ALYRE D'ARLA BAS	Maxi Moyenne	67,1 53,7 CDT25 Conductivité à	5,7 6,3 6,0	1,0 6,2 3,0	<0,2 0,6	<0,5 1,2	1,5 0,8 COT	<0,10	3,3 2,4	0,006	8,0	DTI Dose totale	ACTITR Activité tritium	RALPHA2 Activité alpha
	<i>Maxi</i> <i>Moyenne</i> INC - PALLAYES EST - CHARDET	67,1 53,7 CDT25 Conductivité à 25°C	5,7 6,3 6,0 PH	1,0 6,2 3,0 TH	<0,2 0,6 TURB turbidité	<0,5 1,2 MOAC oxydabilité	1,5 0,8 COT Carbone Organique Total	<0,10 NH4 Ammonium	3,3 2,4 NO3	0,006 NO2 Nitrite	AS Arsenic	DTI Dose totale indicative	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
	Maxi Moyenne	67,1 53,7 CDT25 Conductivité à	5,7 6,3 6,0	1,0 6,2 3,0	<0,2 0,6 TURB	<0,5 1,2 MOAC	1,5 0,8 COT	<0,10 NH4	3,3 2,4 NO3	0,006 NO2	8,0 AS	DTI Dose totale	ACTITR Activité tritium	RALPHA2 Activité alpha
	<i>Maxi</i> <i>Moyenne</i> INC - PALLAYES EST - CHARDET	67,1 53,7 CDT25 Conductivité à 25°C	5,7 6,3 6,0 PH	1,0 6,2 3,0 TH	<0,2 0,6 TURB turbidité	<0,5 1,2 MOAC oxydabilité	1,5 0,8 COT Carbone Organique Total	<0,10 NH4 Ammonium	3,3 2,4 NO3	0,006 NO2 Nitrite	AS Arsenic	DTI Dose totale indicative	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
BAS	Maxi Moyenne INC - PALLAYES EST - CHARDET Unité Limite qualité	67,1 53,7 CDT25 Conductivité à 25°C	5,7 6,3 6,0 PH	1,0 6,2 3,0 TH	<0,2 0,6 TURB turbidité	<0,5 1,2 MOAC oxydabilité	1,5 0,8 COT Carbone Organique Total (mg/l)	<0,10 NH4 Ammonium (mg/l)	3,3 2,4 NO3 Nitrate (mg/l)	0,006 NO2 Nitrite (mg/l)	8,0 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité	67,1 53,7 CDT25 Conductivité à 25°C	5,7 6,3 6,0 PH	1,0 6,2 3,0 TH	<0,2 0,6 TURB turbidité	<0,5 1,2 MOAC oxydabilité	1,5 0,8 COT Carbone Organique Total (mg/l)	<0,10 NH4 Ammonium (mg/l)	3,3 2,4 NO3 Nitrate (mg/l)	0,006 NO2 Nitrite	AS Arsenic (µg/l)	DTI Dose totale indicative	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
BAS Normes eau brute	Maxi Moyenne INC - PALLAYES EST - CHARDET Unité Limite qualité	67,1 53,7 CDT25 Conductivité à 25°C	5,7 6,3 6,0 PH	1,0 6,2 3,0 TH	<0,2 0,6 TURB turbidité	<0,5 1,2 MOAC oxydabilité	1,5 0,8 COT Carbone Organique Total (mg/l)	<0,10 NH4 Ammonium (mg/l)	3,3 2,4 NO3 Nitrate (mg/l)	0,006 NO2 Nitrite (mg/l)	8,0 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Référence qualité	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm)	5,7 6,3 6,0 PH PH à 20°C	1,0 6,2 3,0 TH	CO,2 O,6 TURB turbidité (NTU/NFU)	<0,5 1,2 MOAC oxydabilité	1,5 0,8 COT Carbone Organique Total (mg/l) 10	NH4 Ammonium (mg/I) 4	3,3 2,4 NO3 Nitrate (mg/l)	0,006 NO2 Nitrite (mg/l)	8,0 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en	Maxi Moyenne INC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm)	5,7 6,3 6,0 PH PH à 20°C	1,0 6,2 3,0 TH	CO,2 O,6 TURB turbidité (NTU/NFU)	<0,5 1,2 MOAC oxydabilité	1,5 0,8 COT Carbone Organique Total (mg/l) 10	NH4 Ammonium (mg/I) 4	3,3 2,4 NO3 Nitrate (mg/l)	0,006 NO2 Nitrite (mg/l)	8,0 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 26/10/2000	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE)	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6	5,7 6,3 6,0 PH PH à 20°C	1,0 6,2 3,0 TH	CO,2 O,6 TURB turbidité (NTU/NFU) 2 <0,2	<0,5 1,2 MOAC oxydabilité	1,5 0,8 COT Carbone Organique Total (mg/l) 10	NH4 Ammonium (mg/I) 4	3,3 2,4 NO3 Nitrate (mg/l)	0,006 NO2 Nitrite (mg/l)	8,0 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8	1,0 6,2 3,0 TH dureté (°f)	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1	<0,5 1,2 MOAC oxydabilité (mg O2/l)	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003	8,0 AS Arsenic (μg/l) 100 10	DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS	67,1 53,7 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2	1,0 6,2 3,0 TH dureté (°f)	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 <0,2 1,1 1	<0,5 1,2 MOAC oxydabilité (mg O2/l)	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003	8,0 AS Arsenic (µg/l) 100 10	DTI Dose totale indicative mSv/an 0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS	67,1 53,7 CDT25 Conductivité à 25°C (μ\$/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 <1,1 1 N.M.	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003	8,0 AS Arsenic (μg/l) 100 10	DTI Dose totale indicative mSv/an	ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 nces de qualité de	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. ies à la consomm	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003	8,0 AS Arsenic (µg/l) 100 10	DTI Dose totale indicative mSv/an 0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS DEVICE 2007 relatif aux limites et référe Mini	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 mees de qualité de 39,7	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. les à la consomm <0,2	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 <10,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,0	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003	8,0 AS Arsenic (μg/l) 100 10 <	DTI Dose totale indicative mSv/an 0,1 <0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,02
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS DEVICE 2007 relatif aux limites et référe Mini Maxi	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 nces de qualité de 39,7 54,6	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 es eaux brutes et	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. ies à la consomm	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,0 3,3	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003	8,0 AS Arsenic (µg/l) 100 10	DTI Dose totale indicative mSv/an 0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS DEVICE 2007 relatif aux limites et référe Mini	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 mees de qualité de 39,7	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. les à la consomm <0,2	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 <10,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,0	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003	8,0 AS Arsenic (μg/l) 100 10 <	DTI Dose totale indicative mSv/an 0,1 <0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,02
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 nces de qualité de 39,7 54,6	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 es eaux brutes et	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. les à la consomm <0,2	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 <10,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,0 3,3	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003	8,0 AS Arsenic (μg/l) 100 10 <	DTI Dose totale indicative mSv/an 0,1 <0,1	ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,02
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 nces de qualité de 39,7 54,6 48,1	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 es eaux brutes et 5,7 6,3 6,0	1,0 6,2 3,0 TH dureté (°f) 1,4 1,4 1,7 1 des eaux destiné 1,0 14,4 4,6	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. ies à la consomm <0,2 1,1 TURB	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,10 NH4	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2,3,2 3,3 2,0 3,3 2,8 NO3	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 NO2	8,0 AS Arsenic (μg/l) 100 10 <	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1	ACTITR Activité tritium 3H Bq/I <8,00	RALPHA2 Activité alpha globale Bq/I <0,02
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 nces de qualité de 39,7 54,6 48,1 CDT25	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 es eaux brutes et 5,7 6,3 6,0	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. ses à la consomm <0,2 1,1	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,10	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,0 3,3 2,8	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003	8,0 AS Arsenic (μg/l) 100 10 <	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 DTI	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR	RALPHA2 Activité alpha globale Bq/I <0,02 <audition of="" p<="" property="" td="" the=""></audition>
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAY	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 mces de qualité de 39,7 54,6 48,1 CDT25 Conductivité à 25°C	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 es eaux brutes et 5,7 6,3 6,0	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. ses à la consomm <0,2 1,1 TURB TURB Turbidité	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5 MOAC Oxydabilité	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 NH4 Ammonium	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,0 3,3 2,8 NO3 Nitrate	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 NO2 Nitrite	8,0 AS Arsenic (μg/l) 100 10 <5 AS Arsenic	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 DTI Dose totale indicative	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Noier 2007 relatif aux limites et référe Mini Maxi Moyenne DYER 1 Unité	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 nces de qualité de 39,7 54,6 48,1 CDT25 Conductivité à	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 es eaux brutes et 5,7 6,3 6,0	1,0 6,2 3,0 TH dureté (°f) 1,4 1,4 1,7 1 des eaux destiné 1,0 14,4 4,6	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. ies à la consomm <0,2 1,1 TURB	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l)	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l)	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2,7 3,2 3,3 2,8 NO3 Nitrate (mg/l)	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 NO2	8,0 AS Arsenic (μg/l) 100 10 <5 <5,0 <5 AS Arsenic (μg/l)	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 DTI Dose totale indicative	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAY	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 mces de qualité de 39,7 54,6 48,1 CDT25 Conductivité à 25°C	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 es eaux brutes et 5,7 6,3 6,0	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. ses à la consomm <0,2 1,1 TURB TURB Turbidité	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5 MOAC Oxydabilité	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 NH4 Ammonium	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,0 3,3 2,8 NO3 Nitrate	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 NO2 Nitrite	8,0 AS Arsenic (μg/l) 100 10 <5 AS Arsenic	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 DTI Dose totale indicative	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 00/11/2004 07/10/2008 Réf: arrêté du 11 jan	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Noier 2007 relatif aux limites et référe Mini Maxi Moyenne DYER 1 Unité	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 mces de qualité de 39,7 54,6 48,1 CDT25 Conductivité à 25°C	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 es eaux brutes et 5,7 6,3 6,0	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. ses à la consomm <0,2 1,1 TURB TURB Turbidité	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5 MOAC Oxydabilité	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l)	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l)	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2,7 3,2 3,3 2,8 NO3 Nitrate (mg/l)	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 NO2 Nitrite	8,0 AS Arsenic (μg/l) 100 10 <5 <5,0 <5 AS Arsenic (μg/l)	DTI Dose totale indicative mSv/an 0,1 <0,1 <0,1 DTI Dose totale indicative	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS voier 2007 relatif aux limites et référe Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Limite qualité	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 nces de qualité de 39,7 54,6 48,1 CDT25 Conductivité à 25°C (μS/cm)	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 6,3 6,0 PH PH à 20°C	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. ses à la consomm <0,2 1,1 TURB Turbidité (NTU/NFU)	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5 MOAC Oxydabilité	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l) 10	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,010 NH4 Ammonium (mg/l) 4	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,0 3,3 2,8 NO3 Nitrate (mg/l) 100	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 NO2 Nitrite (mg/l)	8,0 AS Arsenic (μg/l) 100 10 <5 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an 0,1 <0,1 <10,1 Dose totale indicative mSv/an	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS voier 2007 relatif aux limites et référe Mini Maxi Moyenne DYER 1 Unité Limite qualité	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 mces de qualité de 39,7 54,6 48,1 CDT25 Conductivité à 25°C	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 es eaux brutes et 5,7 6,3 6,0 PH PH	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. ses à la consomm <0,2 1,1 TURB TURB Turbidité	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5 MOAC Oxydabilité	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l)	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l)	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,0 3,3 2,8 NO3 Nitrate (mg/l) 100	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 NO2 Nitrite (mg/l)	8,0 AS Arsenic (μg/l) 100 10 <5 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an 0,1 <0,1 <10,1 Dose totale indicative mSv/an	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS voier 2007 relatif aux limites et référe Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Limite qualité	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 nces de qualité de 39,7 54,6 48,1 CDT25 Conductivité à 25°C (μS/cm)	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 6,3 6,0 PH PH à 20°C	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. ses à la consomm <0,2 1,1 TURB Turbidité (NTU/NFU)	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5 MOAC Oxydabilité	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l) 10	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,010 NH4 Ammonium (mg/l) 4	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,0 3,3 2,8 NO3 Nitrate (mg/l) 100	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 NO2 Nitrite (mg/l)	8,0 AS Arsenic (μg/l) 100 10 <5 AS Arsenic (μg/l) 100	DTI Dose totale indicative mSv/an 0,1 <0,1 <10,1 Dose totale indicative mSv/an	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS vicer 2007 relatif aux limites et référe Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Référence qualité BOYER 1 BOYER 1	67,1 53,7 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 moes de qualité de 39,7 54,6 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 70 80,5	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 es eaux brutes et 5,7 6,3 6,0 PH PH à 20°C	1,0 6,2 3,0 TH dureté (*f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté (*f)	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. es à la consomm <0,2 1,1 TURB Turbidité (NTU/NFU) 2 0,9 0,6	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 <0,5 MOAC Oxydabilité (mg O2/l) <0,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l) 10	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,8 NO3 Nitrate (mg/l) 100 50 2,7 4,5	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,0050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	8,0 AS Arsenic (μg/l) 100 10 <5 AS Arsenic (μg/l) 100 10 <5 45 As Arsenic (μg/l) 100 10 <5	DTI Dose totale indicative mSv/an 0,1 <0,1 <10,1 Dose totale indicative mSv/an	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS voier 2007 relatif aux limites et référe Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Référence qualité BOYER 1 BOYER 1 BOYER 1 BOYER 1	67,1 53,7 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 51,6 39,7 47,2 45,7 49,6 54,6 moes de qualité de 39,7 54,6 48,1 CDT25 Conductivité à 25°C (μS/cm) ≥200 et ≤1100 70 80,5 81,1	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 6,3 6,0 PH PH à 20°C	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté (°f)	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. ses à la consomm <0,2 1,1 TURB Turbidité (NTU/NFU) 2 0,9	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5 MOAC Oxydabilité (mg O2/l)	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l) 10	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,8 NO3 Nitrate (mg/l) 100 50	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,0050 NO2 Nitrite (mg/l) 0,2 <0,050	8,0 AS Arsenic (μg/l) 100 10 <5 AS Arsenic (μg/l) 100 110 100 100 100 100 100 100 100 10	DTI Dose totale indicative mSv/an 0,1 <0,1 <10,1 Dose totale indicative mSv/an 0,1 0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS	67,1 53,7 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 39,7 47,2 45,7 49,6 54,6 mes de qualité de 39,7 54,6 48,1 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 70 80,5 81,1 87,3	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,4 5,9	1,0 6,2 3,0 TH dureté (*f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté (*f) 2,1 0,9 2	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. es à la consomm <0,2 1,1 TURB Turbidité (NTU/NFU) 2 0,9 0,6	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 <0,5 MOAC Oxydabilité (mg O2/l) <0,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l) 10 2 0,95 1,1	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,0 3,3 2,8 NO3 Nitrate (mg/l) 100 50 2,7 4,5 4,8	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,0050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	8,0 AS Arsenic (μg/l) 100 10 <5 <5,0 <5 AS Arsenic (μg/l) 100 10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	DTI Dose totale indicative mSv/an 0,1 <0,1 <10,1 Dose totale indicative mSv/an	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Roier 2007 relatif aux limites et référe Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Référence qualité BOYER 1	67,1 53,7 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 51,6 54,6 74,2 45,7 49,6 54,6 39,7 54,6 48,1 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 70 80,5 81,1 87,3 88,5	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 6,3 6,0 PH PH à 20°C	1,0 6,2 3,0 TH dureté (*f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté (*f) 2,1 0,9 2	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. es à la consomm <0,2 1,1 TURB Turbidité (NTU/NFU) 2 0,9 0,6	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 <0,5 MOAC Oxydabilité (mg O2/l) <0,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l) 10 2 0,95 1,1	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,8 NO3 Nitrate (mg/l) 100 50 2,7 4,5 4,8 4,1	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 0,003 0,003	8,0 AS Arsenic (μg/l) 100 10 <5 <5,0 <5,0 <10 AS Arsenic (μg/l) 100 10 10 10 10 10 10 10 10 1	DTI Dose totale indicative mSv/an 0,1 <0,1 <10,1 Dose totale indicative mSv/an 0,1 0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010 28/06/2016	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS	67,1 53,7 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 51,6 54,6 747,2 45,7 49,6 54,6 39,7 54,6 48,1 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 70 80,5 81,1 87,3 88,5 77,9	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,4 5,9	1,0 6,2 3,0 TH dureté (*f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté (*f) 2,1 0,9 2 6,2	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. les à la consomm <0,2 1,1 TURB Turbidité (NTU/NFU) 2 0,9 0,6 0,9	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5 MOAC Oxydabilité (mg O2/l) <0,5 <0,5 <0,5 <0,5 <0,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l) 10 2 0,95 1,1	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,0 3,3 2,8 NO3 Nitrate (mg/l) 100 50 2,7 4,5 4,8	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,0050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	8,0 AS Arsenic (μg/l) 100 10 <5 <5,0 <5 AS Arsenic (μg/l) 100 10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	DTI Dose totale indicative mSv/an 0,1 <0,1 <10,1 Dose totale indicative mSv/an 0,1 0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010 28/06/2016	Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Roier 2007 relatif aux limites et référe Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Référence qualité BOYER 1	67,1 53,7 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 51,6 54,6 747,2 45,7 49,6 54,6 39,7 54,6 48,1 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 70 80,5 81,1 87,3 88,5 77,9	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,4 5,9	1,0 6,2 3,0 TH dureté (*f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté (*f) 2,1 0,9 2 6,2	<0,2 0,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <0,2 1,1 1 N.M. les à la consomm <0,2 1,1 TURB Turbidité (NTU/NFU) 2 0,9 0,6 0,9	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5 MOAC Oxydabilité (mg O2/l) <0,5 <0,5 <0,5 <0,5 <0,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l) 10 2 0,95 1,1	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,8 NO3 Nitrate (mg/l) 100 50 2,7 4,5 4,8 4,1	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 0,003 0,003	8,0 AS Arsenic (μg/l) 100 10 <5 <5,0 <5,0 <10 AS Arsenic (μg/l) 100 10 10 10 10 10 10 10 10 1	DTI Dose totale indicative mSv/an 0,1 <0,1 <10,1 Dose totale indicative mSv/an 0,1 0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,02 <1,002 RALPHA2 Activité alpha globale Bq/I Bq/I
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010 28/06/2016	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS	67,1 53,7 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 51,6 54,6 74,2 45,7 49,6 54,6 100 39,7 54,6 48,1 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 70 80,5 81,1 87,3 88,5 77,9 nuces de qualité de	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,4 5,9 6,75	1,0 6,2 3,0 TH dureté (*f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté (*f) 2,1 0,9 2 6,2 des eaux destiné	CO,2 O,6 TURB turbidité (NTU/NFU) 2 <0,2 <0,2 <1,1 N.M. ses à la consomm <0,2 1,1 TURB Turbidité (NTU/NFU) 2 O,9 O,6 O,9	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5 MOAC Oxydabilité (mg O2/l) <0,5 <0,5 <0,5 <0,5 <0,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l) 10 2 0,95 1,1 0,8 1,1	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,8 NO3 Nitrate (mg/l) 100 50 2,7 4,5 4,8 4,1 3,4	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	8,0 AS Arsenic (μg/l) 100 10 <5 <5,0 <5 AS Arsenic (μg/l) 100 <5	DTI Dose totale indicative mSv/an 0,1 <0,1 <10,1 Dose totale indicative mSv/an 0,1 0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale Bq/I
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010 28/06/2016	Maxi Moyenne ANC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Rovier 2007 relatif aux limites et réfère Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Référence qualité BOYER 1	67,1 53,7 CDT25 Conductivité à 25°C (μs/cm) ≥200 et ≤1100 51,6 54,6 70,0 200 et ≤1100 200 et ≤4,6 200 et ≤4,0 200 et ≤	5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,1 6,3 6,2 5,8 5,7 6,3 6,0 PH PH à 20°C ≥6,5 et ≤9 6,4 5,9 6,75 se seaux brutes et 5,9	1,0 6,2 3,0 TH dureté (°f) 1,4 14,4 1,7 1 des eaux destiné 1,0 14,4 4,6 TH Dureté (°f) 2,1 0,9 2 6,2 des eaux destiné 0,9	CO,2 O,6 TURB turbidité (NTU/NFU) 2 CO,2 CO,3 CO,5 CO,5	<0,5 1,2 MOAC oxydabilité (mg O2/l) <0,5 ation humaine <0,5 MOAC Oxydabilité (mg O2/l) <0,5 <0,5 <0,5 <0,5 <10,5 <0,5 <0,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5 <10,5	1,5 0,8 COT Carbone Organique Total (mg/l) 10 2 0,45 0,65 0,32 0,3 0,7 0,5 COT Carbone Organique Total (mg/l) 10 2 0,95 1,1 0,8 1,1	<0,10 NH4 Ammonium (mg/l) 4 0,1 <0,05 <0,05 <0,05 <0,05 <0,10 NH4 Ammonium (mg/l) 4 0,1 <0,10 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05	3,3 2,4 NO3 Nitrate (mg/l) 100 50 2,7 2 3,2 3,3 2,8 NO3 Nitrate (mg/l) 100 50 2,7 4,5 4,8 4,1 3,4	0,006 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,050 NO2 Nitrite (mg/l) 0,2 <0,050 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003 <0,003	8,0 AS Arsenic (μg/l) 100 10 <5 <5,0 <5,0 <5 AS Arsenic (μg/l) 100 10 10 10 10 10 10 10 10 1	DTI Dose totale indicative mSv/an 0,1 <0,1 <10,1 DTI Dose totale indicative mSv/an 0,1 <0,1	ACTITR Activité tritium 3H Bq/I <8,00 <8,00 ACTITR Activité tritium 3H Bq/I <8,1	RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 RALPHA2 Activité alpha globale Bq/I <0,02 <0,02 <0,02

Volté Vol	RAGE DE NOVA	CELLES	CDT25	PH	TH	TURB	MOAC	СОТ	NH4	NO3	NO2	AS	DTI	ACTITR	RALPHA2
Normes eau mise en distribution Limite qualité Limite Limite qualité Limite Limi				PH	dureté	turbidité	oxydabilité		Ammonium	Nitrate	Nitrite	Arsenic		Activité tritium 3H	Activité alpha globale
Normes eau mise en distribution Limite qualité ≥200 et ≤1100 ≥6,5 et ≤9 2 2 0,1 50 0,2 10 0,1 2 23/05/2016 FORAGE DE NOVACELLES 126,7 4,6 6,5 0,5 0,4 <0,05 <0,1 <0,02 6 <0,100 <9 28/07/2016 FORAGE DE NOVACELLES 136,2 4,6 6,8 0,3 <0,05 <0,1 <0,02 6 <0,100 <9 10/10/2016 FORAGE DE NOVACELLES 136,3 4,7 6,7 0,4 <0,05 0,3 <0,02 0 10/05/2017 FORAGE DE NOVACELLES 136,3 4,7 6,7 0,4 <0,05 0,3 <0,02 0 10/05/2017 FORAGE DE NOVACELLES 141,2 4,6 6,7 <0,5 0,3 <0,05 <0,5 <0,02 16 <0,100 <8 Réf : arrêté du 11 janvier 2007 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine <0,05 <0,0		Unité	(μS/cm)	à 20°C	(°f)	(NTU/NFU)	(mg O2/I)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	mSv/an	Bq/l	Bq/I
Normes eau mise en distribution Référence qualité ≥200 et ≤1100 ≥6,5 et ≤9 2 2 0,1 Montain transport to the property of the pro	rmes eau brute	Limite qualité						10	4	100		100			
23/05/2016 FORAGE DE NOVACELLES 126,7 4,6 6,5 0,5 0,4 <0,05 <0,1 <0,02 6 <0,100 <9	rmes eau mise en	Limite qualité								50	0,2	10	0,1		
28/07/2016 FORAGE DE NOVACELLES 136,2 4,6 6,8 0,3 <0,05	tribution	Référence qualité	≥200 et ≤1100	≥6,5 et ≤9		2		2	0,1						
10/10/2016 FORAGE DE NOVACELLES 136,3 4,7 6,7 0,4 <0,05	/05/2016	FORAGE DE NOVACELLES	126,7	4,6	6,5		0,5	0,4	<0,05	<0,1	<0,02	6	<0,100	<9	<0,03
10/05/2017 FORAGE DE NOVACELLES 141,2 4,6 6,7 <0,5	/07/2016	FORAGE DE NOVACELLES	136,2	4,6	6,8			0,3	<0,05	<0,1	<0,02				
Réf : arrêté du 11 janvier 2007 relatif aux limites et références de qualité des eaux brutes et des eaux destinées à la consommation humaine Mini 126,7 4,6 6,5 0,0 <0,5 0,3 <0,05 <0,1 <0,02 6,00 <8	/10/2016	FORAGE DE NOVACELLES	136,3	4,7	6,7			0,4	<0,05	0,3	<0,02				
Mini 126,7 4,6 6,5 0,0 <0,5 0,3 <0,05 <0,1 <0,02 6,00 <8	/05/2017	FORAGE DE NOVACELLES	141,2	4,6	6,7		<0,5	0,3	<0,05	<0,5	<0,02	16	<0,100	<8	0,02
	f : arrêté du 11 janv	vier 2007 relatif aux limites et référe	ences de qualité de	es eaux brutes et	des eaux destiné	es à la consomm	ation humaine								
Maxi 141.2 4.7 6.8 0.0 0.5 0.4 <0.05 0.3 <0.02 16.0 <0.100 <9		Mini	126,7	4,6	6,5	0,0	<0,5	0,3	<0,05	<0,1	<0,02	6,00		<8	0,02
		Maxi	141,2	4,7	6,8	0,0	0,5	0,4	<0,05	0,3	<0,02	16,0	<0,100	<9	<0,03

135,1 Moyenne 4,6 6,7 0,4

MEDEYROLLES -	DANSADOUR	RBETA2	RBETA2R	ACTIK40	Cl	FMG	SO4	ZN	CU	HG	K	NA	PB	FED
		Activité béta	Activité béta	Activité béta			. 15 .							
		globale	globale résiduelle	attribuable au K40	Chlorure	Fluorures	Sulfates	Zinc	Cuivre	Mercure	Potassium	Sodium	Plomb	Fer dissous
	Unité	Bq/I	Bq/I	Bq/I	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	(mg/l)	(mg/l)	(μg/l)	(μg/l)
Normes eau brute	Limite qualité				200		250	5		1		200	50	
Normes edu brute	Limite quante				200		250	,		1		200	30	
Normes eau mise en	Limite qualité					1,5			2	1			10	
distribution														
	Référence qualité				250		250		1			200		
24/10/2000	DANSADOUR				17,6	0,08	12,1	<0,030	<0,002	<0,2	1	6	<5	
14/09/2004 11/08/2005	DANSADOUR DANSADOUR				4,4 4,8		2,6 2,6							
24/08/2006	DANSADOUR	<0,06			4,8	<0,05000	2,0	<0,030	<0,002	<0,2	1,1	6,3	<5,0	
09/08/2007	DANSADOUR	10,00			6,7	10,00000	3,4	10,000	10,002	-0,2	-)-	0,0	.5,0	
30/09/2009	DANSADOUR				6		3							
17/08/2010	DANSADOUR				5,6		3,3							
22/06/2011	DANSADOUR				5,9	<0,5	3,3				1,1	6,5		900
Réf : arrêté du 11 jar	nvier 2007 relatif aux limites et référe Mini	en .			4.4	<0,05000	2.6				1.0	C 0		
	Maxi	<0,06			4,4 17,6	0,03000	2,6 12,1	<0,030	<0,002	<0,2	1,0 1,1	6,0 6,5	<5,0	900,0
	Moyenne	5,55			7,0	5,55	4,1	3,000	5,552		1,1	6,3		000,0
	•													
		RBETA2	RBETA2R	ACTIK40	Cl	FMG	SO4	ZN	CU	HG	K	NA	PB	FED
MEDEYROLLES -	LA GARDE (LE SUC DE LAIR)	Activité béta	Activité béta globale	Activité béta attribuable au	Chlorure	Fluorures	Sulfates	Zinc	Cuivre	Mercure	Potassium	Sodium	Plomb	Fer dissous
		globale	résiduelle	K40										
	Unité	Bq/I	Bq/I	Bq/I	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	(mg/l)	(mg/l)	(μg/l)	(μg/l)
Normes eau brute	Limite qualité				200		250	5		1		200	50	
	0.5													
Normes eau mise en	Limite qualité					1,5			2	1			10	
distribution	Référence qualité				250		250		1			200		
24/10/2000	LA GARDE (LE SUC DE LAIR)				1	<0,05000	3	<0,030	<0,002	<0,2	1,2	4,7	<5	
14/09/2004	LA GARDE (LE SUC DE LAIR)				4,1	.0,03000	2,7	-0,000	-0,002	٠٠,۷	-,-	7,7	,	
11/08/2005	LA GARDE (LE SUC DE LAIR)	N.M.			1,1	<0,05000	3,1				0,9	3,8		<5
16/05/2006	LA GARDE (LE SUC DE LAIR)	<u> </u>			1		3,4							
07/05/2007	LA GARDE (LE SUC DE LAIR)	<0,08			1,3	0,07	4,4			<0,2	1,1	4,4		
13/05/2008 06/10/2008	LA GARDE (LE SUC DE LAIR) LA GARDE (LE SUC DE LAIR)	0,08	0,06	0,02	1,6		4	<0,010	0,015	<0,2	0,9		<5,0	
02/06/2009	LA GARDE (LE SUC DE LAIR)	0,08	0,00	0,02	1,3		3,7	<0,010	0,013	\0,2	0,9		\3,0	
17/08/2010	LA GARDE (LE SUC DE LAIR)				1,3		4							
22/06/2011	LA GARDE (LE SUC DE LAIR)				1,4	<0,5	4				1	3,7		430
Réf : arrêté du 11 jar	nvier 2007 relatif aux limites et référe													
	Mini	<0,08	0.00	0.03	1,0	<0,05000	2,7	<0,010	<0,002	40.2	0,9	3,7	4F.O	<5
	Maxi Moyenne	0,08	0,06	0,02	4,1 1,6	<0,5	4,4 3,6	<0,030	0,015	<0,2	1,2 1,0	4,7 4,2	<5,0	430,0
	woyenne				1,0		3,0				1,0	4,2		
		DOSTAG												
		RBETA2	RBETA2R	ACTIK40	Cl	FMG	SO4	ZN	CU	HG	K	NA	PB	FED
MEDEYROLLES - :	SOUS LES FAYARDS	Activité béta	Activité béta	Activité béta										
MEDEYROLLES - S	SOUS LES FAYARDS		Activité béta globale	Activité béta attribuable au	Cl	FMG Fluorures	SO4 Sulfates	ZN	Cuivre	HG Mercure	Potassium	Sodium	PB	FED Fer dissous
MEDEYROLLES -	SOUS LES FAYARDS Unité	Activité béta	Activité béta	Activité béta										
MEDEYROLLES - :	Unité	Activité béta globale	Activité béta globale résiduelle	Activité béta attribuable au K40	Chlorure (mg/l)	Fluorures	Sulfates (mg/l)	Zinc (mg/l)	Cuivre	Mercure (μg/l)	Potassium	Sodium (mg/l)	Plomb (µg/l)	Fer dissous
		Activité béta globale	Activité béta globale résiduelle	Activité béta attribuable au K40	Chlorure	Fluorures	Sulfates	Zinc	Cuivre	Mercure	Potassium	Sodium	Plomb	Fer dissous
Normes eau brute	Unité Limite qualité Limite qualité	Activité béta globale	Activité béta globale résiduelle	Activité béta attribuable au K40	Chlorure (mg/l)	Fluorures	Sulfates (mg/l)	Zinc (mg/l)	Cuivre	Mercure (μg/l)	Potassium	Sodium (mg/l)	Plomb (µg/l)	Fer dissous
	Unité Limite qualité , Limite qualité	Activité béta globale	Activité béta globale résiduelle	Activité béta attribuable au K40	Chlorure (mg/l) 200	Fluorures (mg/l)	Sulfates (mg/l) 250	Zinc (mg/l)	Cuivre (mg/l)	Mercure (μg/l)	Potassium	Sodium (mg/l) 200	Plomb (μg/l) 50	Fer dissous
Normes eau brute Normes eau mise en distribution	Unité Limite qualité Limite qualité Référence qualité	Activité béta globale	Activité béta globale résiduelle	Activité béta attribuable au K40	Chlorure (mg/l) 200	Fluorures (mg/l)	Sulfates (mg/l) 250	Zinc (mg/I) 5	Cuivre (mg/l)	Mercure (μg/l) 1	Potassium (mg/l)	Sodium (mg/l) 200	Plomb (μg/l) 50	Fer dissous
Normes eau brute Normes eau mise en distribution 24/10/2000	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS	Activité béta globale Bq/I	Activité béta globale résiduelle	Activité béta attribuable au K40	Chlorure (mg/l) 200 250 3,2	Fluorures (mg/l) 1,5	Sulfates (mg/l) 250 250 5,7	Zinc (mg/l)	Cuivre (mg/l)	Mercure (μg/l)	Potassium (mg/I)	Sodium (mg/l) 200 200 6	Plomb (μg/l) 50	Fer dissous (μg/l)
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007	Unité Limite qualité Limite qualité Référence qualité	Activité béta globale Bq/I <0,07	Activité béta globale résiduelle	Activité béta attribuable au K40	Chlorure (mg/l) 200	Fluorures (mg/l)	Sulfates (mg/l) 250	Zinc (mg/I) 5	Cuivre (mg/l)	Mercure (μg/l) 1 1 <	Potassium (mg/l) 0,8 1,1	Sodium (mg/l) 200	Plomb (μg/l) 50 10	Fer dissous
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS SOUS LES FAYARDS	Activité béta globale Bq/I	Activité béta globale résiduelle Bq/I	Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2	Fluorures (mg/l) 1,5	Sulfates (mg/l) 250 250 5,7	Zinc (mg/I) 5 5 <0,030	Cuivre (mg/l) 2 1 <0,002	Mercure (μg/l) 1	Potassium (mg/I)	Sodium (mg/l) 200 200 6	Plomb (μg/l) 50	Fer dissous (μg/l)
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011	Unité Limite qualité Référence qualité SOUS LES FAYARDS	Activité béta globale Bq/I <0,07	Activité béta globale résiduelle Bq/I	Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2	(mg/l) 1,5 <0,05000 0,1 0,11 <0,5	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8	Zinc (mg/I) 5 5 <0,030	Cuivre (mg/l) 2 1 <0,002	Mercure (μg/l) 1 1 <	O,8 1,1 0,9 1,1	Sodium (mg/l) 200 200 6 8,3 7,4 8,1	Plomb (μg/l) 50 10	Fer dissous (μg/l) <5,0 <10,0 <10,0
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Unité Limite qualité Référence qualité SOUS LES FAYARDS	Activité béta globale Bq/I <0,07 <0,05	Activité béta globale résiduelle Bq/I	Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2 9,8 10,5	(mg/l) 1,5 <0,05000 0,1 0,11	Sulfates (mg/l) 250 250 5,7 5,6	Zinc (mg/I) 5 5 <0,030	Cuivre (mg/l) 2 1 <0,002	Mercure (μg/l) 1 1 <	O,8 1,1 0,9	Sodium (mg/l) 200 200 6 8,3 7,4	Plomb (μg/l) 50 10	Fer dissous (μg/l) <5,0 <10,0
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Unité Limite qualité Référence qualité SOUS LES FAYARDS	Activité béta globale Bq/I <0,07 <0,05	Activité béta globale résiduelle Bq/I	Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6	(mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5	Zinc (mg/l) 5 5 < 0,030 < 0,010	Cuivre (mg/l) 2 1 <0,002 <0,010	Mercure (μg/l) 1 1 <	O,8 1,1 0,9 1,1 1,2	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2	Plomb (μg/l) 50 10	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Unité Limite qualité Référence qualité SOUS LES FAYARDS	Activité béta globale Bq/I <0,07 <0,05	Activité béta globale résiduelle Bq/I	Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2	(mg/l) 1,5 <0,05000 0,1 0,11 <0,5	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8	Zinc (mg/I) 5 5 <0,030	Cuivre (mg/l) 2 1 <0,002	Mercure (μg/l) 1 1 <	O,8 1,1 0,9 1,1	Sodium (mg/l) 200 200 6 8,3 7,4 8,1	Plomb (μg/l) 50 10	Fer dissous (μg/l) <5,0 <10,0 <10,0
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Unité Limite qualité Référence qualité SOUS LES FAYARDS NOVER 2007 relatif aux limites et référe	Activité béta globale Bq/I <0,07 <0,05 <0,05	Activité béta globale résiduelle Bq/I	Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5	Zinc (mg/l) 5 5 < 0,030 < 0,010 < 0,010	Cuivre (mg/l) 2 1 <0,002 <0,010 <0,002	Mercure (μg/l) 1 1 <	O,8 1,1 0,9 1,1 1,2 1,1	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0	Plomb (μg/l) 50 10 <5 <5,0	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS novier 2007 relatif aux limites et référe Mini Maxi Moyenne	Activité béta globale Bq/I	Activité béta globale résiduelle Bq/I 0,03	Activité béta attribuable au K40 Bq/I 0,02	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3	Zinc (mg/l) 5 5 < 0,030 < 0,010 < 0,030 < 0,030	Cuivre (mg/l) 2 1 <0,002 <0,010 <0,010	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2	0,8 1,1 0,9 1,1 1,2 1,1	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6	Plomb (μg/l) 50 10 <	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 <1,0 <1,0
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS novier 2007 relatif aux limites et référe Mini Maxi Moyenne	Activité béta globale Bq/I <0,07 <0,05 <0,05	Activité béta globale résiduelle Bq/I 0,03 0,03 RBETA2R	Activité béta attribuable au K40 Bq/I O,02 O,02 ACTIK40	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7	Zinc (mg/l) 5 5 < 0,030 < 0,010 < 0,010	Cuivre (mg/l) 2 1 <0,002 <0,010 <0,002	Mercure (μg/l) 1 1 <	0,8 1,1 0,9 1,1 1,2 1,1	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3	Plomb (μg/l) 50 10 <5 <5,0	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS novier 2007 relatif aux limites et référe Mini Maxi Moyenne	Activité béta globale Bq/I <0,07 <0,05 <0,05 <0,07 RBETA2 Activité béta	Activité béta globale résiduelle Bq/I 0,03	Activité béta attribuable au K40 Bq/I 0,02	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3	Zinc (mg/l) 5 5 < 0,030 < 0,010 < 0,030 < 0,030	Cuivre (mg/l) 2 1 <0,002 <0,010 <0,010	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2	0,8 1,1 0,9 1,1 1,2 1,1	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6	Plomb (μg/l) 50 10 <	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 <1,0 <1,0
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan	Unité Limite qualité Référence qualité SOUS LES FAYARDS MOUS LES FAYARDS MOUS LES FAYARDS LES FAYARDS Mouser 2007 relatif aux limites et référe Mini Maxi Moyenne LE LAVOIR	Activité béta globale Bq/I <0,07 <0,05 <0,05 <0,07 RBETA2 Activité béta globale	Activité béta globale résiduelle Bq/I Bq/I O,03 O,03 O,03 RBETA2R Activité béta globale résiduelle	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 O,02 ACTIK40 Activité béta attribuable au K40	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates	Zinc (mg/I) 5 5 < 0,030 < 0,010 < 0,010 < 0,030 ZN Zinc	Cuivre (mg/l) 2 1 <0,002 <0,010 <0,010 CU Cuivre	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 HG Mercure	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium	Plomb (μg/l) 50 10 <5 <5,0 <75 <pb plomb<="" td=""><td>Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous</td></pb>	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS novier 2007 relatif aux limites et référe Mini Maxi Moyenne	Activité béta globale Bq/I <0,07 <0,05 <0,05 <0,07 RBETA2 Activité béta	Activité béta globale résiduelle Bq/I Bq/I O,03 O,03 RBETA2R Activité béta globale	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 ACTIK40 Activité béta attribuable au attribuable au	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4	Zinc (mg/l) 5 5 < 0,030 < 0,010 < 0,030 ZN	Cuivre (mg/l) 2 1 <0,002 <0,010 <0,010 CU	Mercure (μg/l) 1 1 <	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 K	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6	Plomb (μg/l) 50 10 <5 <5,0 <pb s<="" sp="" td=""><td>Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 <1,0 FED</td></pb>	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 <1,0 FED
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan	Unité Limite qualité Référence qualité SOUS LES FAYARDS MOUS LES FAYARDS MOUS LES FAYARDS LES FAYARDS Mouser 2007 relatif aux limites et référe Mini Maxi Moyenne LE LAVOIR	Activité béta globale Bq/I <0,07 <0,05 <0,05 <0,07 RBETA2 Activité béta globale	Activité béta globale résiduelle Bq/I Bq/I O,03 O,03 O,03 RBETA2R Activité béta globale résiduelle	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 O,02 ACTIK40 Activité béta attribuable au K40	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates	Zinc (mg/I) 5 5 < 0,030 < 0,010 < 0,010 < 0,030 ZN Zinc	Cuivre (mg/l) 2 1 <0,002 <0,010 <0,010 CU Cuivre	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 HG Mercure	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium	Plomb (μg/l) 50 10 <5 <5,0 <75 <pb plomb<="" td=""><td>Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous</td></pb>	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - l	Unité Limite qualité Référence qualité SOUS LES FAYARDS Noire 2007 relatif aux limites et référe Mini Maxi Moyenne LE LAVOIR Unité Limite qualité	Activité béta globale Bq/I <0,07 <0,05 <0,05 <0,07 RBETA2 Activité béta globale	Activité béta globale résiduelle Bq/I Bq/I O,03 O,03 O,03 RBETA2R Activité béta globale résiduelle	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 O,02 ACTIK40 Activité béta attribuable au K40	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l)	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l)	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l)	Zinc (mg/l) 5 5 < 0,030 < 0,010 < 0,030 ZN Zinc (mg/l)	Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l)	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l)	Plomb (μg/l) 50 10 <5 <5,0 <75 <pb (μg="" 50="" <="" l)="" p="" plomb=""></pb>	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I	Unité Limite qualité Référence qualité SOUS LES FAYARDS Novier 2007 relatif aux limites et référe Mini Maxi Moyenne LE LAVOIR Unité Limite qualité Limite qualité	Activité béta globale Bq/I <0,07 <0,05 <0,05 <0,07 RBETA2 Activité béta globale	Activité béta globale résiduelle Bq/I Bq/I O,03 O,03 O,03 RBETA2R Activité béta globale résiduelle	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 O,02 ACTIK40 Activité béta attribuable au K40	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l)	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l)	Zinc (mg/l) 5 5 < 0,030 < 0,010 < 0,030 ZN Zinc (mg/l)	Cuivre (mg/l) 2 1 <0,002 <0,010 <0,010 CU Cuivre	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 HG Mercure (μg/l)	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l)	Plomb (μg/l) 50 10 <5 <5,0 PB Plomb (μg/l)	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I	Unité Limite qualité Référence qualité SOUS LES FAYARDS Novier 2007 relatif aux limites et référe Mini Maxi Moyenne LE LAVOIR Unité Limite qualité Limite qualité	Activité béta globale Bq/I <0,07 <0,05 <0,05 <0,07 RBETA2 Activité béta globale	Activité béta globale résiduelle Bq/I Bq/I O,03 O,03 O,03 RBETA2R Activité béta globale résiduelle	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 O,02 ACTIK40 Activité béta attribuable au K40	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l)	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l)	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l)	Zinc (mg/l) 5 5 < 0,030 < 0,010 < 0,030 ZN Zinc (mg/l)	Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l)	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l)	Plomb (μg/l) 50 10 <5 <5,0 <75 <pb (μg="" 50="" <="" l)="" p="" plomb=""></pb>	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I	Unité Limite qualité Référence qualité SOUS LES FAYARDS MINIES ES FAYARDS Minies Maxies et référence LE LAVOIR Unité Limite qualité Limite qualité	Activité béta globale Bq/I <0,07 <0,05 <0,07 <10,05 Activité béta globale Bq/I RBETA2 Activité béta globale Bq/I	Activité béta globale résiduelle Bq/I Bq/I O,03 O,03 O,03 RBETA2R Activité béta globale résiduelle	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 O,02 ACTIK40 Activité béta attribuable au K40	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l)	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250	Zinc (mg/l) 5 5 < 0,030 < 0,010 < 0,030 ZN Zinc (mg/l)	Cuivre (mg/I) 2 1 <0,002 <0,010 CU Cuivre (mg/I) 2	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200	Plomb (μg/l) 50 10 <5 <5,0 <75 <pb (μg="" 50="" <="" l)="" p="" plomb=""></pb>	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I	Unité Limite qualité Référence qualité SOUS LES FAYARDS MOS LES FAYARDS Morier 2007 relatif aux limites et référe Mini Maxi Moyenne LE LAVOIR Unité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX)	Activité béta globale Bq/I <0,07 <0,05 <0,07 <10,05 Activité béta globale Bq/I RBETA2 Activité béta globale Bq/I	Activité béta globale résiduelle Bq/I Bq/I O,03 O,03 O,03 RBETA2R Activité béta globale résiduelle	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 O,02 ACTIK40 Activité béta attribuable au K40	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l)	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250	Zinc (mg/l) 5 5 < 0,030 < 0,010 < 0,030 ZN Zinc (mg/l)	Cuivre (mg/I) 2 1 <0,002 <0,010 CU Cuivre (mg/I) 2	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200	Plomb (μg/l) 50 10 <5 <5,0 <75 <pb (μg="" 50="" <="" l)="" p="" plomb=""></pb>	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I	Unité Limite qualité Référence qualité SOUS LES FAYARDS MINITER SOUS LES FAYARDS MOYER 2007 relatif aux limites et référe Miniter 2007 relatif aux limites et référe Maxi Moyenne LE LAVOIR Unité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR)	Activité béta globale Bq/I <0,07 <0,05 <0,07 <10,05 Activité béta globale Bq/I RBETA2 Activité béta globale Bq/I	Activité béta globale résiduelle Bq/I Bq/I O,03 O,03 O,03 RBETA2R Activité béta globale résiduelle	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 O,02 ACTIK40 Activité béta attribuable au K40	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l) 1,5	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250	Zinc (mg/I) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/I) 5	Cuivre (mg/l) 2 1 <0,002 <0,010	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 K Potassium (mg/l)	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200	Plomb (μg/l) 50 10 <5 <5,0 5 PB Plomb (μg/l) 50 10</td <td>Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous</td>	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I	Unité Limite qualité Référence qualité SOUS LES FAYARDS MINIET 2007 relatif aux limites et référe Miniet Maxiet Moyenne LE LAVOIR Unité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	Activité béta globale Bq/I <0,07 <0,05 <0,07 <10,05 Activité béta globale Bq/I RBETA2 Activité béta globale Bq/I	Activité béta globale résiduelle Bq/I Bq/I O,03 O,03 O,03 RBETA2R Activité béta globale résiduelle	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 O,02 ACTIK40 Activité béta attribuable au K40	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200 250	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l) 1,5 <0,05000	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250 250	Zinc (mg/l) 5 5 < 0,030 < 0,010 < 0,030 ZN Zinc (mg/l)	Cuivre (mg/I) 2 1 <0,002 <0,010 CU Cuivre (mg/I) 2	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1	Potassium (mg/I) 0,8 1,1 0,9 1,1 1,2 1,1 K Potassium (mg/I)	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200 200	Plomb (μg/l) 50 10 <5 <5,0 <75 <pb (μg="" 50="" <="" l)="" p="" plomb=""></pb>	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous (μg/l)
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I	Unité Limite qualité Référence qualité SOUS LES FAYARDS INVIER 2007 relatif aux limites et référe Mini Maxi Moyenne LE LAVOIR Unité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR LE LAVOIR	Activité béta globale Bq/I <0,07 <0,05 <0,05 <0,07 RBETA2 Activité béta globale Bq/I	Activité béta globale résiduelle Bq/I 0,03 0,03 RBETA2R Activité béta globale résiduelle Bq/I Bq/I RECTACE RECTACE Activité béta globale résiduelle Bq/I RECTACE RECTACE	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 ACTIK40 Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l) 1,5	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250	Zinc (mg/I) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/I) 5 <0,030	Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1 <0,2	Potassium (mg/I) 0,8 1,1 0,9 1,1 1,2 1,1 K Potassium (mg/I) 0,7 0,9	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200	Plomb (μg/l) 50 10 <>5 <>5,0 <5 Plomb (μg/l) 50 <5 <5 <	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 <1,0 FED Fer dissous
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I	Unité Limite qualité Référence qualité SOUS LES FAYARDS MINIET 2007 relatif aux limites et référe Miniet Maxiet Moyenne LE LAVOIR Unité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	Activité béta globale Bq/I <0,07 <0,05 <0,07 <10,05 Activité béta globale Bq/I RBETA2 Activité béta globale Bq/I	Activité béta globale résiduelle Bq/I Bq/I O,03 O,03 O,03 RBETA2R Activité béta globale résiduelle	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 O,02 ACTIK40 Activité béta attribuable au K40	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200 250	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l) 1,5 <0,05000	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250 250	Zinc (mg/I) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/I) 5	Cuivre (mg/l) 2 1 <0,002 <0,010	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1	Potassium (mg/I) 0,8 1,1 0,9 1,1 1,2 1,1 K Potassium (mg/I)	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200 200	Plomb (μg/l) 50 10 <5 <5,0 5 PB Plomb (μg/l) 50 10</td <td>Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous (μg/l)</td>	Fer dissous (μg/l) <5,0 <10,0 <10,0 <1,0 FED Fer dissous (μg/l)
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - In the seau brute Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008 27/07/2009 06/10/2011	Unité Limite qualité Référence qualité SOUS LES FAYARDS Novier 2007 relatif aux limites et référe Mini Maxi Moyenne LE LAVOIR Unité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR LE LAVOIR LE LAVOIR LE LAVOIR LE LAVOIR	Activité béta globale Bq/I <0,07 <0,05 <0,05 <0,07 RBETA2 Activité béta globale Bq/I	Activité béta globale résiduelle Bq/I 0,03 0,03 RBETA2R Activité béta globale résiduelle Bq/I Bq/I RECTACE RECTACE Activité béta globale résiduelle Bq/I RECTACE RECTACE	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 ACTIK40 Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200 250 2,4 2,3 3 3,1	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05000 <0,05000	Sulfates (mg/l) 250 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250 250 4 3,6	Zinc (mg/I) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/I) 5 <0,030	Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1 <0,2	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium (mg/l) 0,7 0,9 0,7	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200 200 200 5,5 5,7 5,5 5,8	Plomb (μg/l) 50 10 <>5 <>5,0 <5 Plomb (μg/l) 50 <5 <5 <	Fer dissous (μg/l) <5,0 <10,0 <10,0 <10,0 <10,0 (μg/l) FED Fer dissous (μg/l) <5
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008 27/07/2009 06/10/2011 18/09/2013	Unité Limite qualité Référence qualité SOUS LES FAYARDS Mini Maxi Moyenne LE LAVOIR Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	Activité béta globale Bq/I <0,07 <0,05 <0,05 <0,07 RBETA2 Activité béta globale Bq/I	Activité béta globale résiduelle Bq/I 0,03 0,03 RBETA2R Activité béta globale résiduelle Bq/I Bq/I RECTACE RECTACE Activité béta globale résiduelle Bq/I RECTACE RECTACE	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 ACTIK40 Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200 250 2,4 2,3 3 3,1 2,9	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05000 0,11 <0,5 <0,10	Sulfates (mg/l) 250 250 250 5,7 5,6 5,2 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250 250 4 3,6 4,1 4,1 4,4	Zinc (mg/I) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/I) 5 <0,030	Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1 <0,2	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium (mg/l) 0,7 0,9 0,7 0,9 0,7 0,8 0,9 0,81	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200 200 200 5,5 5,7 5,5 5,8 5,2	Plomb (μg/l) 50 10 <>5 <>5,0 <5 Plomb (μg/l) 50 10 <5 < 5 < 10 <	Fer dissous (µg/l) <5,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 FED Fer dissous (µg/l) <5 <2 <10,0 <10,0 <2 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <1
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - In the seau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2001 18/09/2013 06/10/2015	Unité Limite qualité Référence qualité SOUS LES FAYARDS Mini Maxi Moyenne LE LAVOIR Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	Activité béta globale Bq/I <0,07 <0,05 <0,05 <0,07 RBETA2 Activité béta globale Bq/I	Activité béta globale résiduelle Bq/I 0,03 0,03 RBETA2R Activité béta globale résiduelle Bq/I Bq/I RECTACE RECTACE Activité béta globale résiduelle Bq/I RECTACE RECTACE	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 ACTIK40 Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200 250 2,4 2,3 3 3,1 2,9 4,4	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05000 0,11 <0,5 <0,05000 0,11 <0,5 <0,10 0,08	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250 4 3,6 4,1 4,1 4,4 4,2	Zinc (mg/I) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/I) 5 <0,030	Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1 <0,2	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium (mg/l) 0,7 0,9 0,7 0,9 0,7 0,8 0,9 0,81 0,7	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200 200 200 5,5 5,7 5,5 5,8 5,2 5,4	Plomb (μg/l) 50 10 <>5 <>5,0 <5 Plomb (μg/l) 50 10 <5 < 5 < 10 <	Fer dissous (µg/l) <5,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - In the seau brute Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2001 18/09/2013 06/10/2015 20/06/2017	Unité Limite qualité Référence qualité SOUS LES FAYARDS INVIER 2007 relatif aux limites et référent et l'élérent et l	Activité béta globale Bq/I Square (0,07) Square (0,05) Square (0,07) RBETA2 Activité béta globale Bq/I O,06	Activité béta globale résiduelle Bq/I 0,03 0,03 RBETA2R Activité béta globale résiduelle Bq/I Bq/I RECTACE RECTACE Activité béta globale résiduelle Bq/I RECTACE RECTACE	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 ACTIK40 Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200 250 2,4 2,3 3 3,1 2,9	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05000 0,11 <0,5 <0,10	Sulfates (mg/l) 250 250 250 5,7 5,6 5,2 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250 250 4 3,6 4,1 4,1 4,4	Zinc (mg/I) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/I) 5 <0,030	Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1 <0,2	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium (mg/l) 0,7 0,9 0,7 0,9 0,7 0,8 0,9 0,81	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200 200 200 5,5 5,7 5,5 5,8 5,2	Plomb (μg/l) 50 10 <>5 <>5,0 <5 Plomb (μg/l) 50 10 <5 < 5 < 10 <	Fer dissous (µg/l) <5,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 FED Fer dissous (µg/l) <5 <2 <10,0 <10,0 <2 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <1
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - In the seau brute Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2001 18/09/2013 06/10/2015 20/06/2017	Unité Limite qualité Référence qualité SOUS LES FAYARDS Mini Maxi Moyenne LE LAVOIR Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	Activité béta globale Bq/I Square (0,07) Square (0,05) Square (0,07) RBETA2 Activité béta globale Bq/I O,06	Activité béta globale résiduelle Bq/I 0,03 0,03 RBETA2R Activité béta globale résiduelle Bq/I Bq/I RECTACE RECTACE Activité béta globale résiduelle Bq/I RECTACE RECTACE	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 ACTIK40 Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200 250 2,4 2,3 3 3,1 2,9 4,4 2,6	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05000 0,11 <0,5 <0,10 0,08 <0,05	Sulfates (mg/l) 250 250 250 5,7 5,6 5,2 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250 250 4,1 4,1 4,4 4,2 4,3	Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/l) 5 <0,030 <0,010	Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1 <0,2	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium (mg/l) 0,7 0,9 0,7 0,9 0,7 0,8 0,9 0,81 0,7 0,8	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200 200 200 2,5,5 5,7 5,5 5,8 5,2 5,4 5,5	Plomb (μg/l) 50 10 <>5 <>5,0 <5 Plomb (μg/l) 50 10 <5 < 5 < 10 <	Fer dissous (µg/l) <5,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - In the seau brute Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2001 18/09/2013 06/10/2015 20/06/2017	Unité Limite qualité Référence qualité SOUS LES FAYARDS Mini Maxi Moyenne LE LAVOIR Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	Activité béta globale Bq/I Square (0,07) Square (0,05) Square (0,07) RBETA2 Activité béta globale Bq/I O,06	Activité béta globale résiduelle Bq/I 0,03 0,03 RBETA2R Activité béta globale résiduelle Bq/I Bq/I RECTACE RECTACE Activité béta globale résiduelle Bq/I RECTACE RECTACE	Activité béta attribuable au K40 Bq/I Bq/I O,02 O,02 ACTIK40 Activité béta attribuable au K40 Bq/I	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200 250 2,4 2,3 3 3,1 2,9 4,4	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05000 0,11 <0,5 <0,10 0,08	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250 4 3,6 4,1 4,1 4,4 4,2	Zinc (mg/I) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/I) 5 <0,030	Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002	Mercure (μg/l) 1 1 <0,2 <0,2 <0,2 <0,2 HG Mercure (μg/l) 1 <0,2	Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium (mg/l) 0,7 0,9 0,7 0,9 0,7 0,8 0,9 0,81 0,7	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200 200 200 5,5 5,7 5,5 5,8 5,2 5,4	Plomb (μg/l) 50 10 <>5 <>5,0 <5 Plomb (μg/l) 50 10 <5 < 5 < 10 <	Fer dissous (µg/l) <5,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2001 18/09/2013 06/10/2015 20/06/2017	Unité Limite qualité Référence qualité SOUS LES FAYARDS Mini Maxi Moyenne LE LAVOIR Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	Activité béta globale Bq/I Square (0,07 <0,05 <0,07 <0,05 <0,07 RBETA2 Activité béta globale Bq/I 0,06	Activité béta globale résiduelle Bq/I O,03 O,03 RBETA2R Activité béta globale résiduelle Bq/I Bq/I O,04 O,04	Activité béta attribuable au K40 Bq/I O,02 O,02 ACTIK40 Activité béta attribuable au K40 Bq/I O,02 O,02	Chlorure (mg/l) 200 250 3,2 9,8 10,5 14,2 13,6 3,2 14,2 10,3 Cl Chlorure (mg/l) 200 250 2,4 2,3 3 3,1 2,9 4,4 2,6 2,3	Fluorures (mg/l) 1,5 <0,05000 0,1 0,11 <0,5 0,1 <0,05000 0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05000 0,11 <0,5 <0,10 0,08 <0,05000 <0,05000	Sulfates (mg/l) 250 250 5,7 5,6 5,2 4,8 5 4,8 5,7 5,3 SO4 Sulfates (mg/l) 250 250 4 3,6 4,1 4,1 4,4 4,2 4,3 3,6	Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,030	Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 <0,002 <0,010 Cuivre (mg/l) 1 <0,002 <0,010	Mercure (μg/l) 1 1 (Potassium (mg/l) 0,8 1,1 0,9 1,1 1,2 1,1 0,8 1,2 1,0 K Potassium (mg/l) 0,7 0,9 0,7 0,9 0,7 0,9 0,81 0,7 0,8 0,9 0,81 0,7 0,8	Sodium (mg/l) 200 200 6 8,3 7,4 8,1 8,2 6,0 8,3 7,6 NA Sodium (mg/l) 200 200 200 200 5,5 5,7 5,5 5,8 5,2 5,4 5,5 5,2	Plomb (µg/l) 50 10 <	Fer dissous (µg/l) <5,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <10,0 2 (10,0) <1

MEDEYROLLES - I	LA MARUE	RBETA2	RBETA2R Activité béta	ACTIK40 Activité béta	Cl	FMG	SO4	ZN	CU	HG	K	NA	PB	FED
		Activité béta	globale	attribuable au	Chlorure	Fluorures	Sulfates	Zinc	Cuivre	Mercure	Potassium	Sodium	Plomb	Fer dissous
		globale	résiduelle	K40										
	Unité	Bq/I	Bq/I	Bq/I	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	(mg/l)	(mg/l)	(μg/l)	(μg/l)
Normes eau brute	Limite qualité				200		250	5		1		200	50	
	Limito muelité					1.5			2	1			10	
Normes eau mise en	Limite qualité					1,5			2	1			10	
distribution	Référence qualité				250		250		1			200		
23/10/2000	DRAIN 1													
23/10/2000	DRAIN 2													
23/10/2000	DRAIN 3				1,8	<0,05000	6,5	<0,030	<0,002	<0,2	0,4	4,2	<5	
23/10/2000	DRAIN 4													
23/10/2000	DRAIN 5													
23/10/2000	LA MARUE				1,7	<0,05000	5,6	<0,030	<0,002	<0,2	0,5	4,8	<5	
10/06/2004	LA MARUE	0.00	0.05	0.01	1,9	<0,05000	4,7	.0.010	-0.010	.0.2	0,5	4,8	·F 0	<5
07/10/2008 27/07/2009	LA MARUE	0,06	0,05	0,01	2,8	0,14	5,4	<0,010	<0,010	<0,2	0,5 0,7	5	<5,0	<10,0
06/10/2011	LA MARUE				2,4	<0,5	4,5				0,8	5,4		<10,0
16/04/2013	LA MARUE				2,2	<0,10	5,5				0,54	5		2
06/10/2015	LA MARUE				4,4	0,06	4,8				0,7	5,2		<10
20/06/2017	LA MARUE				3,9	<0,05	5,5				0,6	5,5		<10
Réf : arrêté du 11 jar	nvier 2007 relatif aux limites et référe	n												
	Mini				1,7	<0,05000	4,5	<0,010	<0,002		0,4	4,2		2,0
	Maxi	0,06	0,05	0,01	2,8	0,1	6,5	<0,030	<0,010	<0,2	0,8	5,4	<5,0	<10,0
	Moyenne	<u> </u>	<u> </u>		2,6	L	5,3	<u> </u>			0,6	5,0	j	
MEDEYROLLES - J	JOUVET	RBETA2	RBETA2R	ACTIK40	Cl	FMG	SO4	ZN	CU	HG	К	NA	PB	FED
			Activité béta	Activité béta	- CI	11410	334	LIV		1.0		INA		120
		Activité béta globale	globale	attribuable au	Chlorure	Fluorures	Sulfates	Zinc	Cuivre	Mercure	Potassium	Sodium	Plomb	Fer dissous
	Unitá	_	résiduelle Ra/I	K40	(ma/l)	(m ~ /I)	(m=/I)	(m=/I)	(m=/1)	(110/1)	(ma/l)	(m = /1)	/u.a/l\	(110/1)
	Unité	Bq/I	Bq/I	Bq/I	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	(mg/l)	(mg/l)	(μg/l)	(μg/l)
Normes eau brute	Limite qualité				200		250	5		1		200	50	
	Limito qualitá					1 5			2	1			10	
Normes eau mise en	Limite qualité					1,5				1			10	
distribution	Référence qualité				250		250		1			200		
24/10/2000	DRAIN DROIT													
24/10/2000	DRAIN GAUCHE													
24/10/2000	JOUVET				2	<0,05000	6,6	<0,030	<0,002	<0,2	0,8	5,5	<5	
14/09/2004	JOUVET				2,1		6,7							
19/10/2004	JOUVET													
11/08/2005	JOUVET				1,9		6,8							
24/08/2006	JOUVET	40.07			2		7				0.0	4.0		10
09/08/2007 17/08/2007	JOUVET JOUVET	<0,07			2,5		8,3				0,8	4,9		18
31/08/2007	JOUVET													
06/10/2008	JOUVET	0,04	0,02	0,02				<0,010	<0,010	0,3	0,8		<5,0	
05/08/2009	JOUVET				2,3		7,6							
17/08/2010	JOUVET				2,5		7,7							
21/06/2012	JOUVET				2,4	0,1	7,9				0,9	5,3		3
Réf : arrêté du 11 jar	nvier 2007 relatif aux limites et référe	1			1.0	-0.05000	6.6	-0.010	-0.003	.0.2	0.0	4.0	1	2.0
	Mini Maxi	0,04 <0,07	0,0	0,0	1,9 2,5	<0,05000 0,1	6,6 8,3	<0,010 <0,030	<0,002 <0,010	<0,2 0,3	0,8	4,9 5,5	<5,0	3,0 18,0
	Moyenne	<0,07	0,0	0,0	2,3	0,1	7,3	<0,030	<0,010	0,3	0,9	5,2	<5,0	10,5
	moyenne				2,2		7,3				0,0	3,2		10,5
MEDEYROLLES - I	L'ESTIVAL	RBETA2	RBETA2R	ACTIK40	Cl	FMG	SO4	ZN	CU	HG	K	NA	PB	FED
		Activité béta	Activité béta	Activité béta	CI.I	-	C 15 1	7:	0.1			6 11	81 1	5 "
		globale	globale résiduelle	attribuable au K40	Chlorure	Fluorures	Sulfates	Zinc	Cuivre	Mercure	Potassium	Sodium	Plomb	Fer dissous
	Unité	Bq/I	Bq/I	Bq/I	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	(mg/l)	(mg/l)	(μg/l)	(μg/l)
Normes eau brute	Limite qualité				200		250	5		1		200	50	
. Torries eau prute					200		230	3		1		200	30	
Normes eau mise en	Limite qualité					1,5			2	1			10	
distribution														
	Référence qualité				250		250		1			200		
/ /												_	_	
24/10/2000	L'ESTIVAL (CAP)				1,6	<0,05000	5,5	<0,030	<0,002	<0,2	0,5	5	<5	
10/06/2004	L'ESTIVAL (CAP)				1,4		4,8				<u> </u>			
14/09/2004	L'ESTIVAL (CAP)				1,7		4,9							
04/11/2004	L'ESTIVAL (CAP)				1,8		5,2							
17/05/2005	L'ESTIVAL (CAP)				1,5		4,6							
11/08/2005	L'ESTIVAL (CAP)				1,5		4,8				1			1
16/05/2006	L'ESTIVAL (CAP)	<0.0C			1,3	<0.0F000	4,8	<0.020	ZO 003	×0.3	0.0	E 4	∠ F 0	
24/08/2006 07/05/2007	L'ESTIVAL (CAP) L'ESTIVAL (CAP)	<0,06			1,5 1,6	<0,05000	4,9 5,4	<0,030	<0,002	<0,2	0,6	5,1	<5,0	
09/08/2007	L'ESTIVAL (CAP)	<0,07			2,1		5,4			<0,2	0,6	4,9		
13/05/2008	L'ESTIVAL (CAP)	-,			1,9		5,3				-,-	.,~		
28/05/2009	L'ESTIVAL (CAP)				1,8		5,3							
30/09/2009	L'ESTIVAL (CAP)				1,8		5,1			-			-	
09/06/2010	L'ESTIVAL (CAP)				2,4		4,1							
17/08/2010	L'ESTIVAL (CAP) L'ESTIVAL (CAP)				2,7	-0 F	5,2				0.7	F 2		100
	IL ESTIMAL IL ADI	1	l	ļ	2,4	<0,5 0,05	5,4 5				0,7 0,5	5,3 4,9		180 <10
22/06/2011					1 0									· >10
22/06/2011 28/06/2016	L'ESTIVAL (CAP)	r			1,8	0,05	J				0,3	4,5		120
22/06/2011 28/06/2016					1,8	<0,05000	l					4,9		120
22/06/2011 28/06/2016	L'ESTIVAL (CAP) nvier 2007 relatif aux limites et référe	<0,06 <0,07					4,1	<0,030	<0,002	<0,2	0,5		<5,0	180,0
22/06/2011 28/06/2016	L'ESTIVAL (CAP) nvier 2007 relatif aux limites et référe Mini	<0,06			1,3	<0,05000	l	<0,030	<0,002	<0,2	0,5	4,9	<5,0	

ST ALVRE D'ARLA	NC - LES MONTILLES	RBETA2	RBETA2R	ACTIK40	Cl	FMG	SO4	ZN	CU	HG	K	NA	PB	FED
(SECOURS)	NC - LES MONTILLES	Activité béta globale	Activité béta globale résiduelle	Activité béta attribuable au K40	Chlorure	Fluorures	Sulfates	Zinc	Cuivre	Mercure	Potassium	Sodium	Plomb	Fer dissous
	Unité	Bq/I	Bq/l	Bq/l	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	(mg/l)	(mg/l)	(μg/l)	(μg/l)
Normes eau brute	Limite qualité				200		250	5		1		200	50	
Normes eau mise en	Limite qualité					1,5			2	1			10	
distribution	Référence qualité				250		250		1			200		
26/10/2000	LES MONTILLES				1,2	<0,05000	3,4	<0,030	<0,002	<0,2	1,6	3,3	<5	
28/03/2002	LES MONTILLES				1.0		2.4							
	LES MONTILLES LES MONTILLES	<0,06			1,2 1,4	<0,05000	3,4 4,5	<0,030	0,008	<0,2	1,5	4	<5,0	
30/06/2011	LES MONTILLES	·			1,6	<0,5	4,5	·	·	·	1,8	4	·	20
	vier 2007 relatif aux limites et référer Mini	n			1,2	<0,05000	3,4		<0,002		1,5	3,3		
	Maxi	<0,06			1,6	<0,5	4,5	<0,030	0,008	<0,2	1,8	4,0	<5,0	20,0
	Moyenne				1,4		4,0				1,6	3,8		
		RBETA2	RBETA2R	ACTIK40	Cl	FMG	SO4	ZN	CU	HG	K	NA	PB	FED
ST ALYRE D'ARLA	NC - PALLAYES OUEST	Activité béta globale	Activité béta globale résiduelle	Activité béta attribuable au K40	Chlorure	Fluorures	Sulfates	Zinc	Cuivre	Mercure	Potassium	Sodium	Plomb	Fer dissous
	Unité	Bq/l	Bq/I	Bq/I	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	(mg/l)	(mg/l)	(μg/l)	(μg/l)
Normes eau brute	Limite qualité				200		250	5		1		200	50	
Normes eau mise en	Limite qualité					1,5			2	1			10	
	Référence qualité				250		250		1			200		
	DRAIN 1 (GAUCHE) DRAIN 2 (FACE CENTRE)													
	DRAIN 3 (FACE DROITE)													
	PALLAYES OUEST PALLAYES OUEST				1,5	<0,05000	2,4	<0,030	0,003	<0,2	0,8	4	<5	-
	DRAIN 1 (GAUCHE)													
	DRAIN 2 (FACE CENTRE)													
	DRAIN 3 (FACE DROITE) PALLAYES OUEST	N.M.			1,6	<0,05000	1,8				1	4,9		23
07/10/2008	PALLAYES OUEST	0,03	<0,01	0,03	•			<0,010	<0,010	<0,2	1,2		<5,0	
	PALLAYES OUEST PALLAYES OUEST				2,4	<0,1 <0,1	2,8 3,1				1,1 0,8	5,1 4		30 39
28/06/2016	PALLAYES OUEST				2,1	<0,05	2,6				0,9	4,5		<10
	PALLAYES OUEST													
	vier 2007 relatif auv limites et référei	,		•			<u> </u>						•	1
nej . urrete au 11 jan	vier 2007 relatif aux limites et référer Mini	n			1,5	<0,05000	1,8	<0,010	0,0		0,8	4,0		23,0
nej . urrete au 11 jan	Mini Maxi	0,03	<0,01	0,03	2,4	<0,05000 <0,1	3,1	<0,010 <0,030	0,0	<0,2	1,2	5,1	<5,0	39,0
ej . arrete au 11 jan	Mini		<0,01	0,03					,	<0,2		-	<5,0	-
ST ALYRE D'ARLA	Mini Maxi		RBETA2R	ACTIK40	2,4		3,1		,	<0,2 HG	1,2	5,1	<5,0 PB	39,0
	Mini Maxi Moyenne	0,03			2,4 2,0	<0,1	3,1 2,5	<0,030	<0,010		1,2 1,0	5,1 4,5		39,0 30,7
ST ALYRE D'ARLA	Mini Maxi Moyenne	0,03 RBETA2 Activité béta	RBETA2R Activité béta globale	ACTIK40 Activité béta attribuable au	2,4 2,0	<0,1 FMG	3,1 2,5 SO4	<0,030 ZN	<0,010 CU	HG	1,2 1,0	5,1 4,5 NA	PB	39,0 30,7 FED
ST ALYRE D'ARLA BAS	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET	0,03 RBETA2 Activité béta globale	RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl	<0,1 FMG Fluorures	3,1 2,5 SO4	<0,030 ZN Zinc	<0,010	HG Mercure	1,2 1,0 K	5,1 4,5 NA Sodium	PB Plomb	39,0 30,7 FED
ST ALYRE D'ARLA BAS Normes eau brute Normes eau mise en	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité	0,03 RBETA2 Activité béta globale	RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl Chlorure (mg/l)	<0,1 FMG Fluorures	3,1 2,5 SO4 Sulfates (mg/l)	<0,030 ZN Zinc (mg/l)	<0,010	HG Mercure (μg/l)	1,2 1,0 K	5,1 4,5 NA Sodium (mg/l)	PB Plomb (µg/l)	39,0 30,7 FED
ST ALYRE D'ARLA BAS Normes eau brute Normes eau mise en distribution	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité	0,03 RBETA2 Activité béta globale	RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl Chlorure (mg/l)	FMG Fluorures (mg/l)	3,1 2,5 SO4 Sulfates (mg/l)	<0,030 ZN Zinc (mg/l)	CU Cuivre (mg/l)	HG Mercure (μg/l)	1,2 1,0 K	5,1 4,5 NA Sodium (mg/l)	PB Plomb (μg/l) 50	39,0 30,7 FED
ST ALYRE D'ARLA BAS Normes eau brute Normes eau mise en distribution 26/10/2000	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE)	0,03 RBETA2 Activité béta globale	RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40	2,4 2,0 CI Chlorure (mg/l)	FMG Fluorures (mg/l)	3,1 2,5 SO4 Sulfates (mg/l) 250	<0,030 ZN Zinc (mg/l)	<0,010 CU Cuivre (mg/l)	HG Mercure (μg/l)	1,2 1,0 K	5,1 4,5 NA Sodium (mg/l) 200	PB Plomb (μg/l) 50	39,0 30,7 FED
ST ALYRE D'ARLA BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Référence qualité	0,03 RBETA2 Activité béta globale	RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl Chlorure (mg/l) 200	FMG Fluorures (mg/l)	3,1 2,5 SO4 Sulfates (mg/l) 250	<0,030 ZN Zinc (mg/l) 5	<0,010 CU Cuivre (mg/l) 2	HG Mercure (μg/l) 1	1,2 1,0 K Potassium (mg/l)	5,1 4,5 NA Sodium (mg/l) 200	PB Plomb (μg/l) 50	39,0 30,7 FED
ST ALYRE D'ARLA BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS	0,03 RBETA2 Activité béta globale	RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl Chlorure (mg/l) 200 250	FMG Fluorures (mg/l)	3,1 2,5 SO4 Sulfates (mg/l) 250 250	<0,030 ZN Zinc (mg/l)	<0,010 CU Cuivre (mg/l)	HG Mercure (μg/l)	1,2 1,0 K	5,1 4,5 NA Sodium (mg/l) 200	PB Plomb (μg/l) 50	39,0 30,7 FED
ST ALYRE D'ARLA BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS	0,03 RBETA2 Activité béta globale Bq/I	RBETA2R Activité béta globale résiduelle Bq/I	ACTIK40 Activité béta attribuable au K40 Bq/I	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7	<0,1 FMG Fluorures (mg/l) 1,5	3,1 2,5 SO4 Sulfates (mg/l) 250 250 2,2 1,8 3	<0,030 ZN Zinc (mg/l) 5 <0,030	<0,010 CU Cuivre (mg/l) 2 1 <0,002	HG Mercure (μg/l) 1 1 <	1,2 1,0 K Potassium (mg/l)	5,1 4,5 NA Sodium (mg/l) 200	PB Plomb (μg/l) 50 10	39,0 30,7 FED
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS	0,03 RBETA2 Activité béta globale Bq/I	RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl Chlorure (mg/l) 200 250	FMG Fluorures (mg/l)	3,1 2,5 SO4 Sulfates (mg/l) 250 250	<0,030 ZN Zinc (mg/l) 5	<0,010 CU Cuivre (mg/l) 2	HG Mercure (μg/l) 1	1,2 1,0 K Potassium (mg/l)	5,1 4,5 NA Sodium (mg/l) 200	PB Plomb (μg/l) 50	39,0 30,7 FED
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini	0,03 RBETA2 Activité béta globale Bq/I	RBETA2R Activité béta globale résiduelle Bq/I	ACTIK40 Activité béta attribuable au K40 Bq/I	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 2,2 1,8 3 2,8	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010	CU Cuivre (mg/l) 2 1 <0,010 <0,002	HG Mercure (μg/l) 1 1 <0,2 N.M.	1,2 1,0 K Potassium (mg/l) 1,1	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5	PB Plomb (μg/l) 50 10 <55 <5,0	39,0 30,7 FED
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS	0,03 RBETA2 Activité béta globale Bq/I	RBETA2R Activité béta globale résiduelle Bq/I	ACTIK40 Activité béta attribuable au K40 Bq/I	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1	<0,1 FMG Fluorures (mg/l) 1,5	3,1 2,5 SO4 Sulfates (mg/l) 250 250 2,2 1,8 3 2,8	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010	<0,010 CU Cuivre (mg/l) 2 1 <0,002	HG Mercure (μg/l) 1 1 <	1,2 1,0 K Potassium (mg/l)	5,1 4,5 NA Sodium (mg/l) 200	PB Plomb (μg/l) 50 10	39,0 30,7 FED
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne	0,03 RBETA2 Activité béta globale Bq/I 0,04	RBETA2R Activité béta globale résiduelle Bq/I <0,01	ACTIK40 Activité béta attribuable au K40 Bq/I	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 2,2 1,8 3 2,8 1,8 3,0 2,5	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 <0,002 <0,010	HG Mercure (μg/l) 1 1 <0,2 N.M. <0,2	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,1 1,5	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3	PB Plomb (μg/l) 50 10 <5 <5 <5,0	39,0 30,7 FED Fer dissous (µg/l)
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne	0,03 RBETA2 Activité béta globale Bq/I 0,04 0,04 RBETA2	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R Activité béta	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40 ACTIK40 Activité béta	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1 1,7	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05 FMG	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 2,2 1,8 3 2,8 1,8 3,0 2,5	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 <0,002 <0,010	HG Mercure (μg/l) 1 1 <0,2 N.M. <0,2	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,5 1,3	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3	PB Plomb (μg/l) 50 10 <	39,0 30,7 FED Fer dissous (μg/l)
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne	0,03 RBETA2 Activité béta globale Bq/I 0,04	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 2,2 1,8 3 2,8 1,8 3,0 2,5	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 <0,002 <0,010	HG Mercure (μg/l) 1 1 <0,2 N.M. <0,2	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,1 1,5	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3	PB Plomb (μg/l) 50 10 <5 <5 <5,0	39,0 30,7 FED Fer dissous (µg/l)
ST ALYRE D'ARLA BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne	0,03 RBETA2 Activité béta globale Bq/I 0,04 0,04 RBETA2 Activité béta	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R Activité béta globale résiduelle Activité béta globale	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40 ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1 1,7	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05 FMG	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 2,2 1,8 3 2,8 1,8 3,0 2,5	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 <0,002 <0,010	HG Mercure (μg/l) 1 1 <0,2 N.M. <0,2	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,5 1,3	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3	PB Plomb (μg/l) 50 10 <	39,0 30,7 FED Fer dissous (μg/l)
ST ALYRE D'ARLA BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf : arrêté du 11 jan NOVACELLES - BC	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne DYER 1	0,03 RBETA2 Activité béta globale Bq/I 0,04 0,0 RBETA2 Activité béta globale	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40 ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1 1,7 Cl Chlorure	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05 FMG Fluorures	3,1 2,5 SO4 Sulfates (mg/l) 250 250 2,2 1,8 3 2,8 1,8 3,0 2,5 SO4 Sulfates	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 <0,002 <0,010 CU Cuivre	HG Mercure (μg/l) 1 1 <0,2 N.M. <0,2 HG Mercure	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,5 1,3 K	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3 NA Sodium	PB Plomb (μg/l) 50 10 <5 <5 <pb plomb<="" td=""><td>39,0 30,7 FED Fer dissous (μg/l) FED Fer dissous</td></pb>	39,0 30,7 FED Fer dissous (μg/l) FED Fer dissous
ST ALYRE D'ARLA BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BO Normes eau brute Normes eau mise en	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne OYER 1 Unité	0,03 RBETA2 Activité béta globale Bq/I 0,04 0,0 RBETA2 Activité béta globale	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40 ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1 1,7 Cl Chlorure (mg/l)	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05 FMG Fluorures	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 2,2 1,8 3,0 2,8 1,8 3,0 2,5 SO4 Sulfates (mg/l)	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/l)	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 <0,002 <0,010 CU Cuivre	HG Mercure (μg/l) 1 1 <0,2 N.M. <0,2 HG Mercure (μg/l)	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,5 1,3 K	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3 NA Sodium	PB Plomb (µg/l) 50 10 <	39,0 30,7 FED Fer dissous (μg/l) FED Fer dissous
ST ALYRE D'ARLA' BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référen Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité	0,03 RBETA2 Activité béta globale Bq/I 0,04 0,0 RBETA2 Activité béta globale	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40 ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1 1,7 Cl Chlorure (mg/l)	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05 FMG Fluorures (mg/l)	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 2,2 1,8 3,0 2,8 1,8 3,0 2,5 SO4 Sulfates (mg/l)	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/l)	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 <0,002 <0,010 CU Cuivre (mg/l)	HG Mercure (μg/l) 1 1 <0,2 N.M. <0,2 HG Mercure (μg/l) 1	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,5 1,3 K	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3 NA Sodium	PB Plomb (μg/l) 50 10 <5 <5,0 <7 PB Plomb (μg/l) 50	39,0 30,7 FED Fer dissous (μg/l) FED Fer dissous
ST ALYRE D'ARLA' BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau brute Normes eau mise en distribution 23/10/2000	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référent Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Limite qualité Référence qualité BOYER 1	0,03 RBETA2 Activité béta globale Bq/I 0,04 0,0 RBETA2 Activité béta globale	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40 ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1 1,7 Cl Chlorure (mg/l) 200	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05 FMG Fluorures (mg/l)	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 2,2 1,8 3 2,8 3,0 2,5 SO4 Sulfates (mg/l) 250 250 8,9	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/l)	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 <0,002 <0,010 CU Cuivre (mg/l) 2	HG Mercure (μg/l) 1 1 <0,2 N.M. <0,2 HG Mercure (μg/l) 1	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,5 1,3 K	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3 NA Sodium (mg/l) 200	PB Plomb (μg/l) 50 10 <5 <5,0 <7 PB Plomb (μg/l) 50	39,0 30,7 FED Fer dissous (μg/l) FED Fer dissous
ST ALYRE D'ARLA' BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS VIET 2007 relatif aux limites et référen Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Référence qualité BOYER 1 BOYER 1	0,03 RBETA2 Activité béta globale Bq/I 0,04 0,0 RBETA2 Activité béta globale	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40 ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1 1,7 Cl Chlorure (mg/l) 200 250 2,8 3,3	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05 FMG Fluorures (mg/l) 1,5 <0,05000	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 2,2 1,8 3,0 2,5 SO4 Sulfates (mg/l) 250 250 8,9 7,8	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/l) 5	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 1	HG Mercure (μg/l) 1 1 <0,2 N.M. <0,2 HG Mercure (μg/l) 1	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,1 1,5 1,3 K Potassium (mg/l)	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3 NA Sodium (mg/l) 200	PB Plomb (μg/l) 50 10 <	39,0 30,7 FED Fer dissous (μg/l) FED Fer dissous (μg/l)
ST ALYRE D'ARLA' BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Limite qualité BOYER 1 BOYER 1 BOYER 1 BOYER 1 BOYER 1 BOYER 1	0,03 RBETA2 Activité béta globale Bq/I 0,04 0,0 RBETA2 Activité béta globale	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R Activité béta globale résiduelle	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40 ACTIK40 Activité béta attribuable au K40	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1 1,7 Cl Chlorure (mg/l) 200 250 2,8 3,3 3,9	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05 FMG Fluorures (mg/l) 1,5	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 2,2 1,8 3,0 2,5 SO4 Sulfates (mg/l) 250 250 Sulfates (mg/l) 250 250 Sulfates (mg/l) 250 250 8,9 7,8 9,3	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/l) 5	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 1	HG Mercure (μg/l) 1 1 <0,2 N.M. <0,2 HG Mercure (μg/l) 1	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,1 1,5 1,3 K Potassium (mg/l) 1,4 1,4 1,4 1,4	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3 NA Sodium (mg/l) 200	PB Plomb (μg/l) 50 10 <	39,0 30,7 FED Fer dissous (µg/l) FED Fer dissous (µg/l)
ST ALYRE D'ARLA' BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Limite qualité BOYER 1	O,03 RBETA2 Activité béta globale Bq/I O,04 O,0 RBETA2 Activité béta globale Bq/I	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R Activité béta globale résiduelle Bq/I Bq/I Activité béta globale résiduelle Bq/I	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40 ACTIK40 ACTIK40 ACTIK40 ACTIK40 ACTIVITÉ BETA ACTIVIT	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1 1,7 Cl Chlorure (mg/l) 200 250 2,8 3,3 3,9 3,6	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05000 <0,05000 <0,05000	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 250 250 Sulfates (mg/l) 250 250 Sulfates (mg/l) 250 250 Sulfates (mg/l) 250 250 3,9 7,8 9,3	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/l) 5 <0,030	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010	HG Mercure (µg/l) 1 1 <0,2 N.M. <0,2 HG Mercure (µg/l) 1 1 <0,2	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,1 1,5 1,3 K Potassium (mg/l) 1,4 1,4 1,4 1,6	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3 NA Sodium (mg/l) 200	PB Plomb (μg/l) 50 10 <5 <5,0 <5 PB Plomb (μg/l) 50 10 50 <5	39,0 30,7 FED Fer dissous (μg/l) FED Fer dissous (μg/l)
ST ALYRE D'ARLA' BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010 28/06/2016	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Limite qualité BOYER 1 BOYER 1 BOYER 1 BOYER 1 BOYER 1 BOYER 1	O,03 RBETA2 Activité béta globale Bq/I O,04 O,0 RBETA2 Activité béta globale Bq/I O,05	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R Activité béta globale résiduelle Bq/I Bq/I Activité béta globale résiduelle Bq/I	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40 ACTIK40 ACTIK40 ACTIK40 ACTIK40 ACTIVITÉ BETA ACTIVIT	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1 1,7 Cl Chlorure (mg/l) 200 250 2,8 3,3 3,9	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05000	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 2,2 1,8 3,0 2,5 SO4 Sulfates (mg/l) 250 250 Sulfates (mg/l) 250 250 Sulfates (mg/l) 250 250 8,9 7,8 9,3	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/l) 5 <0,030	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010	HG Mercure (µg/l) 1 1 <0,2 N.M. <0,2 HG Mercure (µg/l) 1 1 <0,2	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,1 1,5 1,3 K Potassium (mg/l) 1,4 1,4 1,4 1,4	5,1 4,5 NA Sodium (mg/l) 200 4 4 4,5 4,0 4,5 4,3 NA Sodium (mg/l) 200	PB Plomb (μg/l) 50 10 <5 <5,0 <5 PB Plomb (μg/l) 50 10 50 <5	39,0 30,7 FED Fer dissous (µg/l) FED Fer dissous (µg/l)
ST ALYRE D'ARLA' BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BC Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010 28/06/2016	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité BOYER 1 BOYER 1	O,03 RBETA2 Activité béta globale Bq/I O,04 O,0 RBETA2 Activité béta globale Bq/I O,05	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R Activité béta globale résiduelle Bq/I 0,01 0,01	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40 Activité béta attribuable au K40 O,04 O,04 O,04 O,04 O,04 O,04	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1 1,7 Cl Chlorure (mg/l) 200 250 2,8 3,3 3,9 3,6 3 2,8	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05000 <0,05000 <0,05000 <0,05000	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 250 2,2 1,8 3 2,8 3,0 2,5 SO4 Sulfates (mg/l) 250 250 8,9 7,8 9,3 7,3 7,5	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,030	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 <0,002 <0,010 <0,002	HG Mercure (µg/l) 1 1 1 <0,2 HG Mercure (µg/l) 1 1 <0,2 <0,2 	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,1 1,5 1,3 K Potassium (mg/l) 1,4 1,4 1,4 1,6 1,3	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3 NA Sodium (mg/l) 200 200 6,4 6,1 7,2 5,7	PB Plomb (μg/l) 50 10 <5 <5,0 <5,0 <5 PB Plomb (μg/l) 50 10 <5 <5,0 <5,0 <5 <5,0 <5 <6 <7 <6 <7 <7 <7 <7 <7 <7 <7	39,0 30,7 FED Fer dissous (μg/l) FED Fer dissous (μg/l) 13 <10,0 <10
ST ALYRE D'ARLA BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BO Normes eau brute Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010 28/06/2016 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité BOYER 1	O,03 RBETA2 Activité béta globale Bq/I O,04 O,0 RBETA2 Activité béta globale Bq/I O,05	RBETA2R Activité béta globale résiduelle Bq/I <0,01 <0,01 RBETA2R Activité béta globale résiduelle Bq/I Bq/I Activité béta globale résiduelle Bq/I	ACTIK40 Activité béta attribuable au K40 Bq/I 0,04 ACTIK40 ACTIK40 ACTIK40 ACTIK40 ACTIK40 ACTIVITÉ BETA ACTIVIT	2,4 2,0 Cl Chlorure (mg/l) 200 250 1,5 1,4 1,7 2,1 1,4 2,1 1,7 Cl Chlorure (mg/l) 200 250 2,8 3,3 3,9 3,6 3	<0,1 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05 FMG Fluorures (mg/l) 1,5 <0,05000 <0,05000 <0,05000 <0,05000	3,1 2,5 SO4 Sulfates (mg/l) 250 250 250 2,2 1,8 3 2,8 3,0 2,5 SO4 Sulfates (mg/l) 250 250 8,9 7,8 9,3 7,3 7,5	<0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,010 <0,030 ZN Zinc (mg/l) 5 <0,030 <0,010 <0,030	<0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010 CU Cuivre (mg/l) 2 1 <0,002 <0,010	HG Mercure (µg/l) 1 1 <0,2 N.M. <0,2 HG Mercure (µg/l) 1 1 <0,2	1,2 1,0 K Potassium (mg/l) 1,1 1,5 1,1 1,5 1,3 K Potassium (mg/l) 1,4 1,4 1,4 1,6 1,3	5,1 4,5 NA Sodium (mg/l) 200 200 4 4,5 4,0 4,5 4,3 NA Sodium (mg/l) 200 6,4 6,1	PB Plomb (μg/l) 50 10 <5 <5,0 <5 PB Plomb (μg/l) 50 10 50 <5	39,0 30,7 FED Fer dissous (µg/l) FED Fer dissous (µg/l) 13 <10,0 <10

FORAGE DE NOVA	ACELLES	RBETA2	RBETA2R	ACTIK40	Cl	FMG	SO4	ZN	CU	HG	K	NA	PB	FED
		Activité béta globale	Activité béta globale résiduelle	Activité béta attribuable au K40	Chlorure	Fluorures	Sulfates	Zinc	Cuivre	Mercure	Potassium	Sodium	Plomb	Fer dissous
	Unité	Bq/l	Bq/I	Bq/I	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	(mg/l)	(mg/l)	(μg/l)	(μg/l)
Normes eau brute	Limite qualité				200		250	5		1		200	50	
Normes eau mise en	Limite qualité					1,5			2	1			10	
distribution	Référence qualité				250		250		1			200		
23/05/2016	FORAGE DE NOVACELLES	0,07	<0,040	0,069	2,2	0,19	2,8	<0,010	<0,010	<0,01	2,2	9,7	<2	
28/07/2016	FORAGE DE NOVACELLES				2,1		2,8							
10/10/2016	FORAGE DE NOVACELLES				2,3		3							
10/05/2017	FORAGE DE NOVACELLES	0,12	0,05	0,078	2,3	0,23	2,9	<0,010	<0,010	<0,01	2,5	10,8	<2	N.M.
Réf : arrêté du 11 jan	vier 2007 relatif aux limites et référe	r	•	•		•	•			•		•	•	•
	Mini	0,070	<0,040	0,069	2,1	0,190	2,800	<0,010	<0,010	<0,01	2,2	9,7	<2	
	Maxi	0,120	0,05	0,078	2,3	0,230	3,000	<0,010	<0,010	<0,01	2,5	10,8	<2	N.M.
	Moyenne			0,074	2,2	0,210	2,875				2,4	10,3		

MEDEYROLLES - I	DANSADOLIR	FET	PESTOT	ALTMICR	TAC	TA	CA	MN	MG	SB	NI	HYDISSO
WIEDETROLLES - I	DANSADOOR	FLI	Total des	ALTIVIICK	Titre	Titre	CA	IVIIV	IVIG	36	INI	Hydrocarbures
		Fer total	pesticides analysés	Aluminium total	Alcalimétrique Complet	Alcalimétrique Simple	Calcium	Manganèse	Magnésium	Antimoine	Nickel	dissous et émulsionnés
	Unité	(μg/l)	(μg/l)	(μg/l)	(°f)	(°f)	(mg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)	(mg/l)
Normes eau brute	Limite qualité	407	5	,, ,				407		407	407	1
Normes eua brate	Limite quante		,									1
Normes eau mise en	Limite qualité		0,5							5	20	
distribution	D/f/	200		200				50				
	Référence qualité	200		200				50				
24/10/2000	DANSADOUR	84		11	7,9	<0,1	5	<5	1,5			
14/09/2004 11/08/2005	DANSADOUR DANSADOUR				2,1							
24/08/2006	DANSADOUR	65	<0,01	7	2	<0,1	5,2	<5,0	1,2	<5,0	<5,0	
09/08/2007	DANSADOUR		,		2	,	,	,	,	,	,	
30/09/2009	DANSADOUR				2							
17/08/2010	DANSADOUR				1,8							
22/06/2011	DANSADOUR				1,9	<0,1	4,7	<5,0	1,3	<1,0	<5,0	<0,03
kej : arrete au 11 jan	vier 2007 relatif aux limites et référe Mini	65,0		7,0	1,8		4,7		1,2	<1,0		
	Maxi	84,0	<0,01	11,0	7,9	<0,1	5,2	<5,0	1,5	<5,0	<5,0	<0,03
	Moyenne	74,5		9,0	2,7		5,0		1,3	·		
		FET	PESTOT	ALTMICR	TAC	TA	CA	MN	MG	SB	NI	HYDISSO
MEDEYROLLES - I	LA GARDE (LE SUC DE LAIR)	Fer total	Total des pesticides	Aluminium total	Titre Alcalimétrique	Titre Alcalimétrique	Calcium	Manganèse	Magnésium	Antimoine	Nickel	Hydrocarbures dissous et
			analysés		Complet	Simple		_				émulsionnés
	Unité	(μg/l)	(μg/l)	(μg/l)	(°f)	(°f)	(mg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)	(mg/l)
Normes eau brute	Limite qualité		5									1
	Limite augustas		0.5							_	22	
Normes eau mise en	Limite qualité		0,5							5	20	
distribution	Référence qualité	200		200				50				
24/10/2000	LA GARDE (LE SUC DE LAIR)	<5		<5,00000	1,9	<0,1	5	<5	1,6			
14/09/2004	LA GARDE (LE SUC DE LAIR)	,,		5,5550	2	.5,1	,	.5	-,0			
11/08/2005	LA GARDE (LE SUC DE LAIR)	<5			1,6	<0,1	3	<5	0,8	<5	<5	<0,10
16/05/2006	LA GARDE (LE SUC DE LAIR)				1,6							
07/05/2007	LA GARDE (LE SUC DE LAIR)	<5,0	<0,01	6	2,1	<0,1	6	<5,0	1,2			
13/05/2008 06/10/2008	LA GARDE (LE SUC DE LAIR) LA GARDE (LE SUC DE LAIR)	<10,0		11	1,8							<0,1
02/06/2009	LA GARDE (LE SUC DE LAIR)	\10,0			1,4							<0,1
17/08/2010	LA GARDE (LE SUC DE LAIR)				1,3							
22/06/2011	LA GARDE (LE SUC DE LAIR)				1,5	<0,1	3	<5,0	0,8	<1,0	<5,0	<0,03
Réf : arrêté du 11 jan	vier 2007 relatif aux limites et référe		1					1			1	
	Mini Maxi	<5 <10,0	<0,01	<5,00000 11,0	1,3 2,1	<0,1	3,0 6,0	<5,0	0,8 1,6	<1,0 <5	<5,0	<0,03 <0,1
	Moyenne	<10,0	\0,01	11,0		\0,1		\3,0		,	\3,0	\0,1
					1,7		4,3		1,1			
			1		1,/		4,3		1,1		l	
		FET	PESTOT	ALTMICR	TAC	TA	4,3 CA	MN	MG	SB	NI	HYDISSO
MEDEYROLLES - S	SOUS LES FAYARDS	FET Fer total	PESTOT Total des pesticides	ALTMICR Aluminium total	TAC Titre	TA Titre Alcalimétrique	·	MN Manganèse	·	SB Antimoine	NI Nickel	HYDISSO Hydrocarbures dissous et
MEDEYROLLES - S		Fer total	Total des pesticides analysés	Aluminium total	TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple	CA Calcium	Manganèse	MG Magnésium	Antimoine	Nickel	Hydrocarbures dissous et émulsionnés
MEDEYROLLES - S	GOUS LES FAYARDS Unité		Total des pesticides		TAC Titre Alcalimétrique	Titre Alcalimétrique	CA		MG			Hydrocarbures dissous et
MEDEYROLLES - S		Fer total	Total des pesticides analysés	Aluminium total	TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple	CA Calcium	Manganèse	MG Magnésium	Antimoine	Nickel	Hydrocarbures dissous et émulsionnés
	Unité Limite qualité	Fer total	Total des pesticides analysés (µg/l)	Aluminium total	TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple	CA Calcium	Manganèse	MG Magnésium	Antimoine (μg/l)	Nickel (μg/l)	Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en	Unité	Fer total	Total des pesticides analysés (μg/l)	Aluminium total	TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple	CA Calcium	Manganèse	MG Magnésium	Antimoine	Nickel	Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute	Unité Limite qualité	Fer total	Total des pesticides analysés (µg/l)	Aluminium total	TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple	CA Calcium	Manganèse	MG Magnésium	Antimoine (μg/l)	Nickel (μg/l)	Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en	Unité Limite qualité Limite qualité	Fer total (μg/l)	Total des pesticides analysés (µg/l)	Aluminium total (μg/l)	TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple	CA Calcium	Manganèse (μg/l)	MG Magnésium	Antimoine (μg/l)	Nickel (μg/l)	Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007	Unité Limite qualité Limite qualité Référence qualité	Fer total (μg/l)	Total des pesticides analysés (µg/l)	Aluminium total (μg/l)	TAC Titre Alcalimétrique Complet (°f)	Titre Alcalimétrique Simple (°f)	CA Calcium (mg/l)	Manganèse (μg/l)	MG Magnésium (mg/l)	Antimoine (μg/l)	Nickel (μg/l)	Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS	Fer total (μg/l) 200	Total des pesticides analysés (µg/l) 5 0,5	Aluminium total (μg/l)	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6	Titre Alcalimétrique Simple (°f) <0,1 <0,1	CA Calcium (mg/l) 5,2 8,3	Manganèse (μg/l) 50 <5 <5,0	MG Magnésium (mg/l) <0,10 1,6	Antimoine (μg/l) 5 <5,0	Nickel (μg/l) 20 <5,0	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS	Fer total (μg/l) 200 9 <5,0	Total des pesticides analysés (µg/l)	Aluminium total (μg/l) 200 17	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6	Titre Alcalimétrique Simple ('f) <0,1 <0,1 <0,1	CA Calcium (mg/l) 5,2 8,3 6	Manganèse (μg/l) 50 <5 <5,0 <10,0	MG Magnésium (mg/l) <0,10 1,6	Antimoine (μg/l) 5 <5,0 <5,0	Nickel (μg/l) 20 <5,0 <10,0	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS	Fer total (μg/l) 200 9 <5,0	Total des pesticides analysés (µg/l) 5 0,5	Aluminium total (μg/l) 200 17	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6	Titre Alcalimétrique Simple ('f) <0,1 <0,1 <0,1 <0,1	CA Calcium (mg/l) 5,2 8,3 6 7,3	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7	Antimoine (μg/l) 5 <5,0 <5,0 <1,0	Nickel (μg/l) 20 <5,0 <10,0 <5,0	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,03
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS	Fer total (μg/l) 200 9 <5,0 <10,0	Total des pesticides analysés (µg/l) 5 0,5	Aluminium total (μg/l) 200 17	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6	Titre Alcalimétrique Simple ('f) <0,1 <0,1 <0,1	CA Calcium (mg/l) 5,2 8,3 6	Manganèse (μg/l) 50 <5 <5,0 <10,0	MG Magnésium (mg/l) <0,10 1,6	Antimoine (μg/l) 5 <5,0 <5,0	Nickel (μg/l) 20 <5,0 <10,0	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Unité Limite qualité Référence qualité SOUS LES FAYARDS	Fer total (μg/l) 200 9 <5,0 <10,0	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0	Aluminium total (μg/l) 200 17 <10,0	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4	Titre Alcalimétrique Simple ('f) <0,1 <0,1 <0,1 <0,1 <0,5 <0,1	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <0,50	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,03 <0,03 <0,03
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Unité Limite qualité Référence qualité SOUS LES FAYARDS MICHAEL SE FA	Fer total (μg/l) 200 9 <5,0 <10,0	Total des pesticides analysés (µg/l) 5 0,5 <0,10	Aluminium total (μg/l) 200 17 <10,0	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,4	Titre Alcalimétrique Simple ('f) <0,1 <0,1 <0,1 <0,1 <0,5	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,03 <0,1
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Unité Limite qualité Référence qualité SOUS LES FAYARDS	Fer total (μg/l) 200 9 <5,0 <10,0	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0	Aluminium total (μg/l) 200 17 <10,0	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4	Titre Alcalimétrique Simple ('f) <0,1 <0,1 <0,1 <0,1 <0,5 <0,1	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <0,50	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,03 <0,03 <0,03
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MINITER SOUS LES FAYARDS MINITER SOUS	Fer total (μg/l) 200 9 <5,0 <10,0 <10,0	Total des pesticides analysés (µg/l) 5 0,5 0,5 0,10 0 0,0 <0,10	Aluminium total (μg/l) 200 17 <10,0 17,0	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5	Titre Alcalimétrique Simple ('f) <0,1 <0,1 <0,1 <0,1 <0,1 <0,5 <0,1 0,0	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3 6,6	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <0,50 <5,0	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0	Hydrocarbures dissous et émulsionnés (mg/l) 1
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MINITER SOUS LES FAYARDS MINITER SOUS	Fer total (μg/l) 200 9 <5,0 <10,0	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0	Aluminium total (μg/l) 200 17 <10,0	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,4	Titre Alcalimétrique Simple ('f) <0,1 <0,1 <0,1 <0,1 <0,5 <0,1	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <0,50	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,03 <0,03 <0,03
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MINITER SOUS LES FAYARDS MINITER SOUS	Fer total (μg/l) 200 9 <5,0 <10,0 <10,0	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0 <0,10 PESTOT Total des pesticides	Aluminium total (μg/l) 200 17 <10,0 17,0	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,5 TA Titre Alcalimétrique	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3 6,6	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <0,50 <5,0	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,03 <0,03 <0,1 HYDISSO Hydrocarbures dissous et
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MINITER SOUS LES FAYARDS MINITER SOUS	Fer total (μg/l) 200 9 <5,0 <10,0 7 <5,0 <10,0 FET Fer total	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0 <0,10 PESTOT Total des pesticides analysés	Aluminium total (µg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,5 TA Titre Alcalimétrique Simple	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3 6,6 CA Calcium	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <0,50 <5,0 SB Antimoine	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,03 <0,1 <0,03 HYDISSO Hydrocarbures dissous et émulsionnés
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan	Unité Limite qualité Référence qualité SOUS LES FAYARDS MINITER SOUS LES FAYARDS WIER 2007 relatif aux limites et référence Mini Maxi Moyenne LE LAVOIR Unité	Fer total (μg/l) 200 9 <5,0 <10,0 FET	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0,0 <0,10 PESTOT Total des pesticides analysés (µg/l)	Aluminium total (μg/l) 200 17 <10,0 17,0 ALTMICR	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,5 TA Titre Alcalimétrique	CA Calcium (mg/l) 5,2 8,3 6,7,3 6,2 5,2 8,3 6,6 CA	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 SB	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 NI	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,03 <0,1 <1,003 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan	Unité Limite qualité Référence qualité SOUS LES FAYARDS MINI MAXI Moyenne LE LAVOIR	Fer total (μg/l) 200 9 <5,0 <10,0 7 <5,0 <10,0 FET Fer total	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0 <0,10 PESTOT Total des pesticides analysés	Aluminium total (µg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,5 TA Titre Alcalimétrique Simple	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3 6,6 CA Calcium	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <0,50 <5,0 SB Antimoine	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,03 <0,1 <0,03 HYDISSO Hydrocarbures dissous et émulsionnés
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - L	Unité Limite qualité Référence qualité SOUS LES FAYARDS MINITER SOUS LES FAYARDS WIER 2007 relatif aux limites et référence Mini Maxi Moyenne LE LAVOIR Unité	Fer total (μg/l) 200 9 <5,0 <10,0 7 <5,0 <10,0 FET Fer total	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0,0 <0,10 PESTOT Total des pesticides analysés (µg/l)	Aluminium total (µg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,5 TA Titre Alcalimétrique Simple	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3 6,6 CA Calcium	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <0,50 <5,0 SB Antimoine	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,03 <0,1 <1,003 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MINI Maxi Moyenne LE LAVOIR Unité Limite qualité Limite qualité	Fer total (μg/l) 200 9 <5,0 <10,0 7 <5,0 <10,0 FET Fer total (μg/l)	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0 <0,10 PESTOT Total des pesticides analysés (µg/l) 5	Aluminium total (µg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (µg/l)	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,5 TA Titre Alcalimétrique Simple	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3 6,6 CA Calcium	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l)	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 SB Antimoine (μg/l)	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (μg/l)	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,03 <0,1 <1,003 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I	Unité Limite qualité Limite qualité Référence qualité SOUS LES FAYARDS MINITER SOUS LES FAYARDS SOUS LES FAYARDS LES FAYARDS WIET 2007 relatif aux limites et réfère. Miniter 2007 relatif aux limites et réfère. Miniter 2007 relatif aux limites et réfère. Miniter 2007 relatif aux limites et réfère. Limite qualité Limite qualité Référence qualité	Fer total (μg/l) 200 9 <5,0 <10,0 FET Fer total (μg/l)	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0 <0,10 PESTOT Total des pesticides analysés (µg/l) 5	Aluminium total (µg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,5 TA Titre Alcalimétrique Simple	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3 6,6 CA Calcium	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 SB Antimoine (μg/l)	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (μg/l)	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,03 <0,1 <1,003 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I	Unité Limite qualité Référence qualité SOUS LES FAYARDS Wier 2007 relatif aux limites et référence qualité Limite qualité Limite qualité Référence qualité DRAIN 1 EST ELOIGNE (CHELLE	Fer total (μg/l) 200 9 <5,0 <10,0 FET Fer total (μg/l)	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0 <0,10 PESTOT Total des pesticides analysés (µg/l) 5	Aluminium total (µg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (µg/l)	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,5 TA Titre Alcalimétrique Simple	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3 6,6 CA Calcium	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l)	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 SB Antimoine (μg/l)	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (μg/l)	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,03 <0,1 <1,003 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I	Unité Limite qualité Référence qualité SOUS LES FAYARDS Wier 2007 relatif aux limites et référence qualité Limite qualité Limite qualité Référence qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX)	Fer total (μg/l) 200 9 <5,0 <10,0 FET Fer total (μg/l)	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0 <0,10 PESTOT Total des pesticides analysés (µg/l) 5	Aluminium total (µg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (µg/l)	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,5 TA Titre Alcalimétrique Simple	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3 6,6 CA Calcium	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l)	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 SB Antimoine (μg/l)	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (μg/l)	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,03 <0,1 <1,003 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I	Unité Limite qualité Référence qualité SOUS LES FAYARDS Wier 2007 relatif aux limites et référence qualité Limite qualité Limite qualité Référence qualité DRAIN 1 EST ELOIGNE (CHELLE	Fer total (μg/l) 200 9 <5,0 <10,0 FET Fer total (μg/l)	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0 <0,10 PESTOT Total des pesticides analysés (µg/l) 5	Aluminium total (µg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (µg/l)	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,5 TA Titre Alcalimétrique Simple	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3 6,6 CA Calcium	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l)	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 SB Antimoine (μg/l)	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (μg/l)	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,03 <0,1 <1,003 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 14/09/2004	Unité Limite qualité Référence qualité SOUS LES FAYARDS Wier 2007 relatif aux limites et référence qualité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR)	Fer total (μg/l) 200 9 <5,0 <10,0 7 <5,0 <10,0 FET Fer total (μg/l) 200 5 <5	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0 <0,10 PESTOT Total des pesticides analysés (µg/l) 5	Aluminium total (μg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (μg/l) 200	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet (°f)	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,5 TA Titre Alcalimétrique Simple (°f)	CA Calcium (mg/l) 5,2 8,3 6 7,3 6,2 5,2 8,3 6,6 CA Calcium (mg/l)	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l) 50	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7 MG Magnésium (mg/l)	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 SB Antimoine (μg/l)	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (μg/l)	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,0,1 <0,0,03 <0,1 <hydisso (mg="" dissous="" et="" hydrocarbures="" l)<="" td="" émulsionnés=""></hydisso>
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008	Unité Limite qualité Référence qualité SOUS LES FAYARDS LES FAYARDS SOUS LES FAYARDS SOUS LES FAYARDS LIMITE AUDIT	Fer total (μg/l) 200 9 <5,0 <10,0 7 <5,0 <10,0 FET Fer total (μg/l) 200	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0 <0,10 PESTOT Total des pesticides analysés (µg/l) 5 0,5	Aluminium total (μg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (μg/l) 200	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet (°f)	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,5 TA Titre Alcalimétrique Simple (°f) <0,1 <0,0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <	CA Calcium (mg/l) 5,2 8,3 6,7,3 6,2 5,2 8,3 6,6 CA Calcium (mg/l)	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l) 50 <5 <25 <25 <25 <25 <25 <25 <25 <25 <25	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7 MG Magnésium (mg/l) 1 1	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 Image: 1,0 <0,50 <5,0 SB Antimoine (μg/l) 5 <5	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (μg/l) 20 <5	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,0,1 <0,0,03 <0,0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,0,03 <0,1 <0,0,03 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,00 <0,0
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008 27/07/2009	Unité Limite qualité Référence qualité SOUS LES FAYARDS LIMITE AUTOR	Fer total (μg/l) 200 9 <5,0 <10,0 7 <5,0 <10,0 FET Fer total (μg/l) 200 5 <5	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0 <0,10 PESTOT Total des pesticides analysés (µg/l) 5	Aluminium total (μg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (μg/l) 200 6	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet (°f)	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,5 <1,1 <0,5 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <	CA Calcium (mg/l) 5,2 8,3 6,7,3 6,2 5,2 8,3 6,6 CA Calcium (mg/l) 4,2 4,2 4,2	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l) 50 <5 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 MN Manganèse (μg/l) 50 <10,0 <10,0 <10,0 <10,0 <10,0 MN Manganèse (μg/l)	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7 MG Magnésium (mg/l) 1 1	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 <5,0 1,0 <0,50 <5,0 5B Antimoine (μg/l) 5 <5	Nickel (µg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (µg/l) 20 <5	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,0,1 <0,0,03 <0,0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008 27/07/2009 06/10/2011	Unité Limite qualité Référence qualité SOUS LES FAYARDS Wier 2007 relatif aux limites et réfère. Mini Maxi Moyenne LE LAVOIR Unité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	Fer total (μg/l) 200 9 <5,0 <10,0 7 <5,0 <10,0 FET Fer total (μg/l) 200 5 <5	Total des pesticides analysés (µg/l) 5 0,5 <0,10 0 0,0 <0,10 PESTOT Total des pesticides analysés (µg/l) 5 0,5	Aluminium total (μg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (μg/l) 200 6	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet (°f) 1,6 1,7 TAC Titre Alcalimétrique Complet (°f) 1,6 1,9	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,5 <1,1 <0,5 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <	CA Calcium (mg/l) 5,2 8,3 6,7,3 6,2 5,2 8,3 6,6 CA Calcium (mg/l) 4,2 4,2 4,2 4,6	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l) 50 <5 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <5 <5 <5 <5 <5 <5 <5 <5 <	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7 MG Magnésium (mg/l) 1 1 1 1 1,1	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 Image: Control of the control of	Nickel (µg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (µg/l) 20 <5 <10,0 <5,0 <5,0 <10,0 <5,0	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,0,1 <0,0,03 <0,0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I Normes eau brute Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008 27/07/2009	Unité Limite qualité Référence qualité SOUS LES FAYARDS LIMITE AUTOR	Fer total (μg/l) 200 9 <5,0 <10,0 7 <5,0 <10,0 FET Fer total (μg/l) 200 5 <5	Total des pesticides analysés (µg/l) 5 0,5 0,5 0,5 0,10 0 0 0,0 <0,10 0 PESTOT Total des pesticides anµg/l) 5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0	Aluminium total (μg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (μg/l) 200 6	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet (°f)	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,5 <1,1 <0,5 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <	CA Calcium (mg/l) 5,2 8,3 6,7,3 6,2 5,2 8,3 6,6 CA Calcium (mg/l) 4,2 4,2 4,2	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l) 50 <5 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 MN Manganèse (μg/l) 50 <10,0 <10,0 <10,0 <10,0 <10,0 MN Manganèse (μg/l)	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7 MG Magnésium (mg/l) 1 1	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 <5,0 1,0 <0,50 <5,0 5B Antimoine (μg/l) 5 <5	Nickel (µg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (µg/l) 20 <5	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,0,1 <0,0,03 <0,0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 18/09/2011 18/09/2013	Unité Limite qualité Référence qualité SOUS LES FAYARDS Wier 2007 relatif aux limites et référe. Mini Maxi Moyenne LE LAVOIR Unité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	Fer total (μg/l) 200 9 <5,0 <10,0 7 <5,0 <10,0 FET Fer total (μg/l) 200 5 <5	Total des pesticides analysés (µg/l) 5 0,5 0,5 0,5 0,10 0 0 0,0 <0,10 0 PESTOT Total des pesticides analysés (µg/l) 5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0	Aluminium total (μg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (μg/l) 200 6	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet (°f) 1,6 1,7 TAC Titre Alcalimétrique Complet (°f) 1,6 1,9	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,5 <1,1 <0,5 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <	CA Calcium (mg/l) 5,2 8,3 6,7,3 6,2 5,2 8,3 6,6 CA Calcium (mg/l) 4,2 4,2 4,2 4,6 3,7	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l) 50 <5 <5 <0,00078	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7 MG Magnésium (mg/l) 1 1 1 1 1,1 1	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 Image: Control of the control of	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (μg/l) 20 <5 <10,0 <5,0 <0,5 <10,0 <5,0 <0,5 <10,0	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,0,1 <0,0,3 <0,0,1 <1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,0,1 <0,0,1 <0,0,1 <0,0,1 <0,0,1 <0,0,1 <0,0,1 <0,0,1 <0,0,1 <0,0,1 <0,0,1 <0,0,0,1
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008 27/07/2009 06/10/2011 18/09/2013 06/10/2015 20/06/2017 Réf: arrêté du 11 jan	Unité Limite qualité Référence qualité SOUS LES FAYARDS MINIE 2007 relatif aux limites et référence qualité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	Fer total (µg/l) 200 9 <5,0 <10,0 FET Fer total (µg/l) 200 5 <5 12	Total des pesticides analysés (µg/l) 5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0	Aluminium total (µg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (µg/l) 200 6 12	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet (°f) 1,6 1,7 1,7 1,6 1,8 1,7 1,6	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,5 <1,1 <0,5 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <	CA Calcium (mg/l) 5,2 8,3 6,7,3 6,2 5,2 8,3 6,6 CA Calcium (mg/l) 4,2 4,2 4,6 3,7 4,7 4,5	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l) 50 <5 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7 MG Magnésium (mg/l) 1 1 1 1,1 1,09 1,05	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 Image: Control of the control	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (μg/l) 20 <5 <5 <5 <10,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <	Hydrocarbures dissous et émulsionnés (mg/l) 1
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008 27/07/2009 06/10/2011 18/09/2013 06/10/2015 20/06/2017 Réf: arrêté du 11 jan	Unité Limite qualité Référence qualité SOUS LES FAYARDS IN LE LAVOIR LE LAV	Fer total (µg/l) 200 9 <5,0 <10,0 FET Fer total (µg/l) 200 5 <5 12	Total des pesticides analysés (µg/l) 5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0	Aluminium total (µg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (µg/l) 200 6 12	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet (°f) 1,6 1,7 1,6 1,6 1,7 1,6 1,6 1,9	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,5 <0,1 0,0 TA Titre Alcalimétrique Simple (°f) <0,1 <0,5 <0,1 <0,5 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,	CA Calcium (mg/l) 5,2 8,3 6,7,3 6,2 5,2 8,3 6,6 CA Calcium (mg/l) 4,2 4,2 4,2 4,6 3,7 4,7 4,5	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l) 50 <5 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7 MG Magnésium (mg/l) 1 1 1 1,1 1,09 1,05	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 Indicates the second of the second	Nickel (µg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (µg/l) 20 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0	Hydrocarbures dissous et émulsionnés (mg/l) 1
Normes eau brute Normes eau mise en distribution 24/10/2000 07/05/2007 07/10/2008 27/07/2009 06/10/2011 18/09/2013 Réf: arrêté du 11 jan MEDEYROLLES - I Normes eau mise en distribution 24/10/2000 24/10/2000 24/10/2000 24/10/2000 24/10/2000 14/09/2004 06/10/2008 27/07/2009 06/10/2011 18/09/2013 06/10/2015 20/06/2017 Réf: arrêté du 11 jan	Unité Limite qualité Référence qualité SOUS LES FAYARDS MINIE 2007 relatif aux limites et référence qualité Limite qualité Limite qualité DRAIN 1 EST ELOIGNE (CHELLE DRAIN 2 EST PROCHE (RIX) DRAIN 3 SUD (LAVOIR) LE LAVOIR	Fer total (µg/l) 200 9 <5,0 <10,0 FET Fer total (µg/l) 200 5 <5 12	Total des pesticides analysés (µg/l) 5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0	Aluminium total (µg/l) 200 17 <10,0 17,0 ALTMICR Aluminium total (µg/l) 200 6 12	TAC Titre Alcalimétrique Complet (°f) 1,5 1,6 1,5 1,4 1,4 1,6 1,5 TAC Titre Alcalimétrique Complet (°f) 1,6 1,7 1,7 1,6 1,8 1,7 1,6	Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,5 <1,1 <0,5 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <	CA Calcium (mg/l) 5,2 8,3 6,7,3 6,2 5,2 8,3 6,6 CA Calcium (mg/l) 4,2 4,2 4,6 3,7 4,7 4,5	Manganèse (μg/l) 50 <5 <5,0 <10,0 <5,0 <0,0005 <10,0 MN Manganèse (μg/l) 50 <5 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0 <10,0	MG Magnésium (mg/l) <0,10 1,6 1,4 1,7 1,6 <0,10 1,7 MG Magnésium (mg/l) 1 1 1 1,1 1,09 1,05	Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <0,50 <5,0 Image: Control of the control	Nickel (μg/l) 20 <5,0 <10,0 <5,0 0,5 <10,0 NI Nickel (μg/l) 20 <5 <5 <5 <10,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <	Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,0,1 <0,0,3 <0,1 <1,0,0,3 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,0,1 <0,0,1 <0,1 <0,1 <0,1 <0,1 <

MEDEYROLLES - L	A MARUE	FET	PESTOT	ALTMICR	TAC	TA	CA	MN	MG	SB	NI	HYDISSO
			Total des		Titre	Titre						Hydrocarbures
		Fer total	pesticides	Aluminium total		Alcalimétrique	Calcium	Manganèse	Magnésium	Antimoine	Nickel	dissous et
	Unité	(μg/l)	analysés (μg/l)	(μg/l)	Complet (°f)	Simple (°f)	(mg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)	émulsionnés (mg/l)
		(Mg/1)		(Mg/1)	(- /	(- /	(***8/*/	(Fig.1)	(8/./	(Mg/1)	(μ.g/.)	
Normes eau brute	Limite qualité		5									1
	Limite qualité		0,5							5	20	
Normes eau mise en distribution												
	Référence qualité	200		200				50				
23/10/2000	DRAIN 1											
23/10/2000	DRAIN 2											
23/10/2000	DRAIN 3	5		18	0,6	<0,1	2,1	<5	0,6			
23/10/2000 23/10/2000	DRAIN 4											
23/10/2000	DRAIN 5 LA MARUE	43		41	1,2	<0,1	2,8	<5	1,8			
10/06/2004	LA MARUE	10		41	1,2	<0,1	2,8	<5	0,8	<5	<5	
07/10/2008	LA MARUE	<10,0		12	1,2	10,1	2,0		0,0	,,		<0,1
27/07/2009	LA MARUE	,	<0,10		1,4	<0,1	3,1	<10,0	0,8	<5,0	<10,0	<0,1
06/10/2011	LA MARUE				1,6	<0,1	3,8	<5,0	0,9	<1,0	<5,0	<0,03
16/04/2013	LA MARUE		<2,00		1	<0,5	2	0,0018	0,66	<0,5	<0,5	<0,1
06/10/2015	LA MARUE		<0,500				4	<10	1,2	<1	<5	<0,1
20/06/2017	LA MARUE		<0,500				3,1	<10	0,8	<1	<5	<0,1
Réf : arrêté du 11 jan	vier 2007 relatif aux limites et référer		-0.40	12.0	0.6	-0.4	2.0	0.0040	0.6	-0.5	-0.5	-0.03
	Mini Maxi	5,0 43,0	<0,10 <2,00	12,0 41,0	0,6 1,6	<0,1 <0,5	2,0 3,8	0,0018 <10,0	0,6 1,8	<0,5 <5,0	<0,5 <10,0	<0,03 <0,1
	Moyenne	19,3	`~_,00	23,7	1,0	٠٠,٥	3,0	\±U,U	0,9	\J,U	`10,0	~U,1
	, -		•				-1-	•	/ -		•	•
MEDEYROLLES - J	OUVET	FET	PESTOT	ALTMICR	TAC	TA	CA	MN	MG	SB	NI	HYDISSO
			Total des		Titre	Titre						Hydrocarbures
		Fer total	pesticides analysés	Aluminium total	Alcalimétrique Complet	Alcalimétrique Simple	Calcium	Manganèse	Magnésium	Antimoine	Nickel	dissous et émulsionnés
	Unité	(μg/l)	(μg/l)	(μg/l)	(°f)	(°f)	(mg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)	(mg/l)
Normes eau brute	Limite qualité	407	5	407				407		407	407	1
Normes edu brute	Limite quante		,									1
Normes eau mise en	Limite qualité		0,5							5	20	
distribution												
	Référence qualité	200		200				50				
24/10/2000	DRAIN DROIT											
24/10/2000	DRAIN GAUCHE			.5.00000	4.7	0.1		-	4.4			
24/10/2000 14/09/2004	JOUVET	8		<5,00000	1,7 1,8	<0,1	4,5	<5	1,1			
19/10/2004	JOUVET				1,0							
11/08/2005	JOUVET				1,8							
24/08/2006	JOUVET				1,8							
	JOUVET	15			1,5	<0,1	4,5	<5,0	1	<5,0	<5,0	
17/08/2007	JOUVET											
31/08/2007	JOUVET											
06/10/2008	JOUVET	<10,0		<10,0	1.6							<0,1
05/08/2009 17/08/2010	JOUVET JOUVET				1,6 1,6							
21/06/2012	JOUVET		0		1,6	<0,1	4,4	26	1	<0,5	<0,5	<0,10
	vier 2007 relatif aux limites et référer	! !			1,0	10,1	7,7	20	-	10,5	10,5	10,10
	Mini	8,0		<5,00000	1,5		4,4	<5,0	1,0	<0,5		
	Maxi	15,0	0,0	<10,0	1,8	<0,1	4,5	26,0	1,1	<5,0	<5,0	<0,1
	Moyenne	11,5			1,7		4,5		1,0			
MEDEYROLLES - L	'ESTIVAL	FET	PESTOT Total des	ALTMICR	TAC Titre	TA Titre	CA	MN	MG	SB	NI	HYDISSO Hydrocarbures
		Fer total	pesticides	Aluminium total		Alcalimétrique	Calcium	Manganèse	Magnésium	Antimoine	Nickel	dissous et
			analysés		Complet	Simple						émulsionnés
	Unité	(μg/l)	(μg/l)	(μg/l)	(°f)	(°f)	(mg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)	(mg/l)
Normes eau brute	Limite qualité		5									1
	Limite qualité		0,5							5	20	
Normes eau mise en distribution			0,0									
	Référence qualité	200		200				50				
24/10/2000	L'ESTIVAL (CAP)	9		21	1,4	<0,1	3,1	<5	0,8			
10/06/2004	L'ESTIVAL (CAP)				1,1							
14/09/2004	L'ESTIVAL (CAP)				1,7							
04/11/2004	L'ESTIVAL (CAP)				1,5							
17/05/2005	L'ESTIVAL (CAP)				1,3							
11/08/2005	L'ESTIVAL (CAP)				1,6							
16/05/2006	L'ESTIVAL (CAP)	.5.0			1,5	.0.1	2.2	.5.0	0.7	.E 0	-5.0	-
24/08/2006 07/05/2007	L'ESTIVAL (CAP) L'ESTIVAL (CAP)	<5,0		6	1,7 1,7	<0,1	3,9	<5,0	0,7	<5,0	<5,0	-
09/08/2007	L'ESTIVAL (CAP)	15	<0,05		1,7	<0,1	3,4	<5,0	0,8			
13/05/2008	L'ESTIVAL (CAP)		.5,55		1,6	.5,1	٥,٦	.5,0	5,0			
28/05/2009	L'ESTIVAL (CAP)		<u></u>	<u></u>	1,6			<u></u>				<u> </u>
30/09/2009	L'ESTIVAL (CAP)				1,7							
09/06/2010	L'ESTIVAL (CAP)				1,5							
17/08/2010	L'ESTIVAL (CAP)				1,4	-0.1	2.5	ر. د د د	0.0	-1.0	4F 0	40.03
22/06/2011 28/06/2016	L'ESTIVAL (CAP)		<0,500		1,6	<0,1	3,5 3,4	<5,0 <10	0,9 0,87	<1,0 <1	<5,0 <5	<0,03 <0,1
	L'ESTIVAL (CAP) vier 2007 relatif aux limites et référer	<u> </u>	\U,JUU	<u> </u>		<u> </u>	3,4	/10	0,07	\1	\)	\U,I
-	Mini	<5,0		6,0	1,1		3,1		0,7	<1,0		
	Maxi	15,0	<0,05	21,0	1,7	<0,1	3,9	<5,0	0,9	<5,0	<5,0	<0,03
	Moyenne			13,5	1,5		3,5		0,8			

CT ALVDE D'ADLA	NC - LES MONTILLES	FET	PESTOT	ALTMICR	TAC	TA	CA	MN	MG	SB	NI	HYDISSO
(SECOURS)	NC - LES MIONTILLES	Fer total	Total des pesticides	Aluminium total	Titre Alcalimétrique	Titre Alcalimétrique	Calcium	Manganèse	Magnésium	Antimoine	Nickel	Hydrocarbures dissous et
(52000113)		T CT COCCI	analysés	7 11 11 11 11 11 11 11 11 11 11 11 11 11	Complet	Simple	Carciani	manganese	magnesiam	7 111111101110	THERE	émulsionnés
	Unité	(μg/l)	(μg/l)	(μg/l)	(°f)	(°f)	(mg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)	(mg/l)
Normes eau brute	Limite qualité		5									1
Normes eau mise en	Limite qualité		0,5							5	20	
distribution	Référence qualité	200		200				50				
	· ·				1.1	2.1	•		4.4			
26/10/2000 28/03/2002	LES MONTILLES LES MONTILLES	19		26	1,4	<0,1	3	<5	1,4			
10/06/2004	LES MONTILLES				1,5							
24/08/2006	LES MONTILLES	26		32	1,8	<0,1	3,3	<5,0	1,5	<5,0	<5,0	
30/06/2011	LES MONTILLES				1,6	<0,1	3,6	<5,0	1,7	<1,0	<5,0	<0,03
Réf : arrêté du 11 jan	vier 2007 relatif aux limites et référei	r.										
	Mini	19,0		26,0	1,4		3,0		1,4	<1,0		
	Maxi	26,0 22,5		32,0 29,0	1,8 1,6	<0,1	3,6 3,3	<5,0	1,7 1,5	<5,0	<5,0	<0,03
	Moyenne	22,3	l	29,0	1,0		3,3		1,3			
		FET	PESTOT	ALTMICR	TAC	TA	CA	MN	MG	SB	NI	HYDISSO
ST ALYRE D'ARLA	NC - PALLAYES OUEST		Total des		Titre	Titre						Hydrocarbures
		Fer total	pesticides analysés	Aluminium total	Alcalimétrique Complet	Alcalimétrique Simple	Calcium	Manganèse	Magnésium	Antimoine	Nickel	dissous et émulsionnés
	Unité	(μg/l)	(μg/l)	(μg/l)	(°f)	(°f)	(mg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)	(mg/l)
Normas and built		,	5	, , ,				, , ,		,	, 0 /	1
Normes eau brute	Limite qualité		3									1
Normes eau mise en	Limite qualité		0,5							5	20	
distribution	n///											
	Référence qualité	200		200				50				
26/10/2000	DRAIN 1 (GAUCHE)			1								
26/10/2000 26/10/2000	DRAIN 2 (FACE CENTRE) DRAIN 3 (FACE DROITE)											
26/10/2000	PALLAYES OUEST	107		98	1,6	<0,1	2,9	7	1,3			
28/03/2002	PALLAYES OUEST				_,~		_,~					
27/01/2003	DRAIN 1 (GAUCHE)									<5	_	
27/01/2003	DRAIN 2 (FACE CENTRE)									<5		
27/01/2003	DRAIN 3 (FACE DROITE) PALLAYES OUEST	112			2.6	.0.1	4.2		1.6	<5 .5		.0.10
11/08/2005 07/10/2008	PALLAYES OUEST	112 76		50	2,6	<0,1	4,3	6	1,6	<5	<5	<0,10 <0,1
22/10/2010	PALLAYES OUEST	70	<0,10	30	2	<0,1	4,1	<5,0	1,7	<1,0	<5,0	<0,1
21/06/2012	PALLAYES OUEST		0		1,5	<0,1	2,6	4	1,2	<0,5	0,9	<0,10
28/06/2016	PALLAYES OUEST		0,142				4,2	<10	1,67	<1	<5	<0,1
20/06/2017	PALLAYES OUEST											
Réf : arrêté du 11 ian					•							
	vier 2007 relatif aux limites et référei			50.0	4.5		2.6	.5.0	4.2	-0.5	0.0	10.00
	Mini	76,0	0,0	50,0 98.0	1,5 2.6	<0.1	2,6 4.3	<5,0 7.0	1,2 1.7	<0,5 <5	0,9 <5	<0,03 <0.10
			0,0 <0,10	50,0 98,0 74,0	1,5 2,6 1,9	<0,1	2,6 4,3 3,6	<5,0 7,0 5,7	1,2 1,7 1,5	<0,5 <5	0,9 <5	<0,03 <0,10
	Mini Maxi	76,0 112,0	,	98,0	2,6	<0,1	4,3	7,0	1,7			
ST ALYRE D'ARLA	Mini Maxi	76,0 112,0	<0,10	98,0	2,6 1,9	TA	4,3	7,0	1,7			<0,10
	Mini Maxi Moyenne	76,0 112,0 98,3	<0,10	98,0 74,0	2,6 1,9 TAC Titre		4,3 3,6	7,0 5,7	1,7 1,5	<5	<5	<0,10
ST ALYRE D'ARLA	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET	76,0 112,0 98,3 FET	<0,10 PESTOT Total des pesticides analysés	98,0 74,0 ALTMICR	2,6 1,9 TAC Titre	TA Titre Alcalimétrique Simple	4,3 3,6 CA	7,0 5,7 MN Manganèse	1,7 1,5 MG Magnésium	<5 SB Antimoine	<5 NI Nickel	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés
ST ALYRE D'ARLA	Mini Maxi Moyenne	76,0 112,0 98,3	<0,10 PESTOT Total des pesticides	98,0 74,0	2,6 1,9 TAC Titre Alcalimétrique	TA Titre Alcalimétrique	4,3 3,6 CA	7,0 5,7 MN	1,7 1,5 MG	<5 SB	<5 NI	<0,10 HYDISSO Hydrocarbures dissous et
ST ALYRE D'ARLA BAS	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET	76,0 112,0 98,3 FET	<0,10 PESTOT Total des pesticides analysés	98,0 74,0 ALTMICR	2,6 1,9 TAC Titre Alcalimétrique Complet	TA Titre Alcalimétrique Simple	4,3 3,6 CA	7,0 5,7 MN Manganèse	1,7 1,5 MG Magnésium	<5 SB Antimoine	<5 NI Nickel	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés
ST ALYRE D'ARLA BAS	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité	76,0 112,0 98,3 FET	PESTOT Total des pesticides analysés (µg/I)	98,0 74,0 ALTMICR	2,6 1,9 TAC Titre Alcalimétrique Complet	TA Titre Alcalimétrique Simple	4,3 3,6 CA	7,0 5,7 MN Manganèse	1,7 1,5 MG Magnésium	<5 SB Antimoine (μg/l)	<5 NI Nickel (μg/l)	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
ST ALYRE D'ARLA BAS Normes eau brute Normes eau mise en	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité	76,0 112,0 98,3 FET	<0,10 PESTOT Total des pesticides analysés (µg/l)	98,0 74,0 ALTMICR	2,6 1,9 TAC Titre Alcalimétrique Complet	TA Titre Alcalimétrique Simple	4,3 3,6 CA	7,0 5,7 MN Manganèse	1,7 1,5 MG Magnésium	<5 SB Antimoine	<5 NI Nickel	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
ST ALYRE D'ARLA BAS	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité	76,0 112,0 98,3 FET	PESTOT Total des pesticides analysés (µg/I)	98,0 74,0 ALTMICR	2,6 1,9 TAC Titre Alcalimétrique Complet	TA Titre Alcalimétrique Simple	4,3 3,6 CA	7,0 5,7 MN Manganèse	1,7 1,5 MG Magnésium	<5 SB Antimoine (μg/l)	<5 NI Nickel (μg/l)	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
ST ALYRE D'ARLA BAS Normes eau brute Normes eau mise en distribution	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité	76,0 112,0 98,3 FET Fer total (μg/l)	PESTOT Total des pesticides analysés (µg/I)	98,0 74,0 ALTMICR Aluminium total (µg/l)	2,6 1,9 TAC Titre Alcalimétrique Complet	TA Titre Alcalimétrique Simple	4,3 3,6 CA	7,0 5,7 MN Manganèse (µg/l)	1,7 1,5 MG Magnésium	<5 SB Antimoine (μg/l)	<5 NI Nickel (μg/l)	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
ST ALYRE D'ARLAI BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND)	76,0 112,0 98,3 FET Fer total (µg/l)	PESTOT Total des pesticides analysés (µg/I)	98,0 74,0 ALTMICR Aluminium total (µg/l)	2,6 1,9 TAC Titre Alcalimétrique Complet (°f)	TA Titre Alcalimétrique Simple (°f)	4,3 3,6 CA Calcium (mg/l)	7,0 5,7 MN Manganèse (µg/l)	1,7 1,5 MG Magnésium (mg/l)	<5 SB Antimoine (μg/l)	<5 NI Nickel (μg/l)	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS	76,0 112,0 98,3 FET Fer total (μg/l)	PESTOT Total des pesticides analysés (µg/I)	98,0 74,0 ALTMICR Aluminium total (µg/l)	2,6 1,9 TAC Titre Alcalimétrique Complet (°f)	TA Titre Alcalimétrique Simple	4,3 3,6 CA	7,0 5,7 MN Manganèse (µg/l)	1,7 1,5 MG Magnésium	<5 SB Antimoine (μg/l)	<5 NI Nickel (μg/l)	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS	76,0 112,0 98,3 FET Fer total (µg/l)	PESTOT Total des pesticides analysés (µg/I)	98,0 74,0 ALTMICR Aluminium total (µg/l)	2,6 1,9 TAC Titre Alcalimétrique Complet (°f)	TA Titre Alcalimétrique Simple (°f)	4,3 3,6 CA Calcium (mg/l)	7,0 5,7 MN Manganèse (µg/l)	1,7 1,5 MG Magnésium (mg/l)	<5 SB Antimoine (μg/l)	<5 NI Nickel (μg/l)	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS	76,0 112,0 98,3 FET Fer total (µg/l) 200	PESTOT Total des pesticides analysés (µg/I)	98,0 74,0 ALTMICR Aluminium total (µg/l)	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6	TA Titre Alcalimétrique Simple (°f) <0,1	4,3 3,6 CA Calcium (mg/l)	7,0 5,7 MN Manganèse (µg/l)	1,7 1,5 MG Magnésium (mg/l)	<5 SB Antimoine (μg/l)	<5 NI Nickel (μg/l)	HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS	76,0 112,0 98,3 FET Fer total (µg/l) 200	PESTOT Total des pesticides analysés (µg/I)	98,0 74,0 ALTMICR Aluminium total (µg/l) 200	2,6 1,9 TAC Titre Alcalimétrique Complet (°f)	TA Titre Alcalimétrique Simple (°f)	4,3 3,6 CA Calcium (mg/l)	7,0 5,7 MN Manganèse (µg/l)	1,7 1,5 MG Magnésium (mg/l)	<5 SB Antimoine (μg/l)	<5 NI Nickel (μg/l)	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS VIET 2007 relatif aux limites et référen Mini	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28	PESTOT Total des pesticides analysés (µg/I)	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0	2,6 1,9 TAC Titre Alcalimétrique Complet (*f) 1,7 1,6 1,6 1,7	TA Titre Alcalimétrique Simple (°f) <0,1	4,3 3,6 CA Calcium (mg/l) 2,9	7,0 5,7 MN Manganèse (μg/l) 50 <5 <10,0	1,7 1,5 MG Magnésium (mg/l) 1,7	<5 SB Antimoine (μg/l) 5 <5,0	<5 NI Nickel (μg/l) 20 <10,0	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28,0 41,0	PESTOT Total des pesticides analysés (µg/I)	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7	TA Titre Alcalimétrique Simple (°f) <0,1	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0	7,0 5,7 MN Manganèse (μg/l) 50 <5	1,7 1,5 MG Magnésium (mg/l)	<5 SB Antimoine (μg/l)	<5 NI Nickel (μg/l)	HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS VIET 2007 relatif aux limites et référen Mini	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28	PESTOT Total des pesticides analysés (µg/I)	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0	2,6 1,9 TAC Titre Alcalimétrique Complet (*f) 1,7 1,6 1,6 1,7	TA Titre Alcalimétrique Simple (°f) <0,1	4,3 3,6 CA Calcium (mg/l) 2,9	7,0 5,7 MN Manganèse (μg/l) 50 <5 <10,0	1,7 1,5 MG Magnésium (mg/l) 1,7	<5 SB Antimoine (μg/l) 5 <5,0	<5 NI Nickel (μg/l) 20 <10,0	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28,0 41,0	PESTOT Total des pesticides analysés (µg/I)	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7	TA Titre Alcalimétrique Simple (°f) <0,1	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0	7,0 5,7 MN Manganèse (μg/l) 50 <5 <10,0	1,7 1,5 MG Magnésium (mg/l) 1,7	<5 SB Antimoine (μg/l) 5 <5,0	<5 NI Nickel (μg/l) 20 <10,0	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1
ST ALYRE D'ARLAI BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28 28,0 41,0 34,5 FET	PESTOT Total des pesticides analysés (µg/l) 5 0,5	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,6 1,7 1,7 TAC Titre	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 TA Titre	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0 3,0 CA	7,0 5,7 MN Manganèse (µg/l) 50 <5 <10,0 MN	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7	<5 SB Antimoine (μg/l) 5 <5,0 <5,0	<5 NI Nickel (μg/l) 20 <10,0 NI	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures
ST ALYRE D'ARLAI BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28 41,0 34,5	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,7 1,6 1,7 TAC Titre Alcalimétrique	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 TA Titre Alcalimétrique	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0 3,0	7,0 5,7 MN Manganèse (μg/l) 50 <5 <10,0 <5 <10,0	1,7 1,5 MG Magnésium (mg/l) 1,7	<5 SB Antimoine (μg/l) 5 <5,0 <5,0	<5 NI Nickel (μg/l) 20 <10,0	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1
ST ALYRE D'ARLAI BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28 28,0 41,0 34,5 FET	PESTOT Total des pesticides analysés (µg/l) 5 0,5	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,6 1,7 1,7 TAC Titre	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 TA Titre	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0 3,0 CA	7,0 5,7 MN Manganèse (µg/l) 50 <5 <10,0 MN	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7	<5 SB Antimoine (μg/l) 5 <5,0 <5,0	<5 NI Nickel (μg/l) 20 <10,0 NI	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures
ST ALYRE D'ARLAI BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Wier 2007 relatif aux limites et référer Mini Maxi Moyenne PYER 1 Unité	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28 28,0 41,0 34,5 FET Fer total	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) PESTOT Total des pesticides analysés (µg/l)	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,6 1,7 TAC Titre Alcalimétrique Complet	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 TA Titre Alcalimétrique Simple	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0 3,0 CA Calcium	7,0 5,7 MN Manganèse (μg/l) 50 <5 <10,0 MN Manganèse	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 MG Magnésium	SB Antimoine (μg/l) 5 <5,0 <5,0 SB Antimoine	<5 NI Nickel (μg/l) 20 <10,0 NI Nickel	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés
ST ALYRE D'ARLAI BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS PALLAYES EST - CHARDET BAS VIEL 2007 relatif aux limites et référer Mini Maxi Moyenne	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28 28,0 41,0 34,5 FET Fer total	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,6 1,7 TAC Titre Alcalimétrique Complet	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 TA Titre Alcalimétrique Simple	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0 3,0 CA Calcium	7,0 5,7 MN Manganèse (μg/l) 50 <5 <10,0 MN Manganèse	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 MG Magnésium	SB Antimoine (μg/l) 5 <5,0 <5,0 SB Antimoine	<5 NI Nickel (μg/l) 20 <10,0 NI Nickel	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
ST ALYRE D'ARLAI BAS Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Wier 2007 relatif aux limites et référer Mini Maxi Moyenne PYER 1 Unité	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28 28,0 41,0 34,5 FET Fer total	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) PESTOT Total des pesticides analysés (µg/l)	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,6 1,7 TAC Titre Alcalimétrique Complet	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 TA Titre Alcalimétrique Simple	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0 3,0 CA Calcium	7,0 5,7 MN Manganèse (μg/l) 50 <5 <10,0 MN Manganèse	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 MG Magnésium	SB Antimoine (μg/l) 5 <5,0 <5,0 SB Antimoine	<5 NI Nickel (μg/l) 20 <10,0 NI Nickel	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BO Normes eau mise en distribution	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référent Mini Maxi Moyenne OYER 1 Unité Limite qualité Limite qualité Limite qualité	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28,0 41,0 34,5 FET Fer total (µg/l)	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 PESTOT Total des pesticides analysés (µg/l) 5	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total (µg/l)	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,6 1,7 TAC Titre Alcalimétrique Complet	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 TA Titre Alcalimétrique Simple	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0 3,0 CA Calcium	7,0 5,7 MN Manganèse (µg/l) 50 <5 <10,0 MN Manganèse (µg/l)	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 MG Magnésium	<5 SB Antimoine (μg/l) 5 <5,0 <5,0 SB Antimoine (μg/l)	<10,0 NI Nickel (µg/l) 20 <10,0 NI Nickel (µg/l)	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BO Normes eau mise en distribution	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Wire 2007 relatif aux limites et référent Mini Maxi Moyenne OYER 1 Unité Limite qualité Limite qualité Limite qualité Référence qualité	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28 28,0 41,0 34,5 FET Fer total (µg/l)	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 PESTOT Total des pesticides analysés (µg/l) 5	98,0 74,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total (µg/l) 200	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,7 1,7 TAC Titre Alcalimétrique Complet (°f)	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 TA Titre Alcalimétrique Simple (°f)	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0 3,0 CA Calcium (mg/l)	7,0 5,7 MN Manganèse (µg/l) 50 <5 <10,0 MN Manganèse (µg/l) 50	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 MG Magnésium (mg/l)	<5 SB Antimoine (μg/l) 5 <5,0 <5,0 SB Antimoine (μg/l)	<10,0 NI Nickel (µg/l) 20 <10,0 NI Nickel (µg/l)	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau mise en distribution 26/10/2000 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BO Normes eau mise en distribution 23/10/2000	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS VIET 2007 relatif aux limites et référent Mini Maxi Moyenne OYER 1 Unité Limite qualité Limite qualité Référence qualité BOYER 1	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28,0 41,0 34,5 FET Fer total (µg/l)	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 PESTOT Total des pesticides analysés (µg/l) 5	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total (µg/l)	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,7 1,7 TAC Titre Alcalimétrique Complet (°f)	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 TA Titre Alcalimétrique Simple	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0 3,0 CA Calcium	7,0 5,7 MN Manganèse (µg/l) 50 <5 <10,0 MN Manganèse (µg/l)	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 MG Magnésium	<5 SB Antimoine (μg/l) 5 <5,0 <5,0 SB Antimoine (μg/l)	<10,0 NI Nickel (µg/l) 20 <10,0 NI Nickel (µg/l)	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BO Normes eau mise en distribution	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Référence qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Wire 2007 relatif aux limites et référent Mini Maxi Moyenne OYER 1 Unité Limite qualité Limite qualité Limite qualité Référence qualité	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28 28,0 41,0 34,5 FET Fer total (µg/l)	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 PESTOT Total des pesticides analysés (µg/l) 5	98,0 74,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total (µg/l) 200	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,7 1,7 TAC Titre Alcalimétrique Complet (°f)	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 TA Titre Alcalimétrique Simple (°f)	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0 3,0 CA Calcium (mg/l)	7,0 5,7 MN Manganèse (µg/l) 50 <5 <10,0 MN Manganèse (µg/l) 50	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 MG Magnésium (mg/l)	<5 SB Antimoine (μg/l) 5 <5,0 <5,0 SB Antimoine (μg/l)	<10,0 NI Nickel (µg/l) 20 <10,0 NI Nickel (µg/l)	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l)
Normes eau brute Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BO Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Limite qualité BOYER 1 BOYER 1 BOYER 1 BOYER 1 BOYER 1 BOYER 1	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28,0 41,0 34,5 FET Fer total (µg/l)	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 0,5	98,0 74,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total (µg/l) 200	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,7 TAC Titre Alcalimétrique Complet (°f)	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <1,1 TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1	4,3 3,6 CA Calcium (mg/l) 2,9 3,0 3,0 CA Calcium (mg/l) 5,8 5,6	7,0 5,7 MN Manganèse (µg/l) 50 <5 <10,0 MN Manganèse (µg/l) 50 <5 <10,0 <5 <10,0	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 MG Magnésium (mg/l)	<5 SB Antimoine (μg/l) 5 <5,0 <5,0 <μg/l) 5 <5,0 <5,0 <5,0 <5,0	<5 NI Nickel (μg/l) 20 <10,0 NI Nickel (μg/l) 220 <55	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,10 <0,10 <0,1
Normes eau mise en distribution Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BO Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et réfèrer Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Limite qualité BOYER 1	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28,0 41,0 34,5 FET Fer total (µg/l) 200 74	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 0,5	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total (µg/l) 200 95	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,7 1,7 TAC Titre Alcalimétrique Complet (°f)	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1 <0,1 <0,1 <0,1	4,3 3,6 CA Calcium (mg/l) 2,9 3,0 3,0 CA Calcium (mg/l) 5,8 5,6 6,9	7,0 5,7 MN Manganèse (μg/l) 50 <5 <10,0 MN Manganèse (μg/l) 50 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 MG Magnésium (mg/l) 1,7 1,7	SB Antimoine (μg/l) 5 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5	<5 NI Nickel (μg/l) 20 <10,0 NI Nickel (μg/l) 20 <5 <5,0	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,003
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BO Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010 28/06/2016	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne OYER 1 Unité Limite qualité Limite qualité BOYER 1	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28,0 41,0 34,5 FET Fer total (µg/l) 200 74 58 42	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 0,5	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total (µg/l) 200 95	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,7 TAC Titre Alcalimétrique Complet (°f)	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <1,1 TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1	4,3 3,6 CA Calcium (mg/l) 2,9 3,0 3,0 CA Calcium (mg/l) 5,8 5,6	7,0 5,7 MN Manganèse (µg/l) 50 <5 <10,0 MN Manganèse (µg/l) 50 <5 <10,0 <5 <10,0	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 MG Magnésium (mg/l)	<5 SB Antimoine (μg/l) 5 <5,0 <5,0 <μg/l) 5 <5,0 <5,0 <5,0 <5,0	<5 NI Nickel (μg/l) 20 <10,0 NI Nickel (μg/l) 220 <55	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BO Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010 28/06/2016	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et réfèrer Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Limite qualité BOYER 1	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28,0 41,0 34,5 FET Fer total (µg/l) 200 74 58 42	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 0,5	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total (µg/l) 200 95	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,7 TAC Titre Alcalimétrique Complet (°f)	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <1,1 TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1	4,3 3,6 CA Calcium (mg/l) 2,9 3,0 3,0 CA Calcium (mg/l) 5,8 5,6 6,9	7,0 5,7 MN Manganèse (μg/l) 50 <5 <10,0 MN Manganèse (μg/l) 50 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 MG Magnésium (mg/l) 1,7 1,7	SB Antimoine (μg/l) 5 <5,0 <5,0 <1,0 <5,0 <5,0 <1,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5	<5 NI Nickel (μg/l) 20 <10,0 NI Nickel (μg/l) 20 <5 <5,0	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,10 <0,1 <0,03
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BO Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010 28/06/2016	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne OYER 1 Unité Limite qualité Limite qualité BOYER 1	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28,0 41,0 34,5 FET Fer total (µg/l) 200 74 58 42	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 0,5	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total (µg/l) 200 95	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,7 TAC Titre Alcalimétrique (°f) 2,2 2 1,8 2,6	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <1,1 TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1 <1,1	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0 3,0 CA Calcium (mg/l) 5,8 5,6 6,9 5,7	7,0 5,7 MN Manganèse (μg/l) 50 <5 <10,0 MN Manganèse (μg/l) 50 <5 <10,0 <5 <10,0 <5 <10,0 <5 <10,0	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 MG Magnésium (mg/l) 1,7 1,7	SB Antimoine (μg/l) 5 <5,0 <5,0 <5,0 <5,0 <5,0 <1,0 <1 <1	<5 NI Nickel (μg/l) 20 <10,0 NI Nickel (μg/l) 20 <5 <5,0	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <0,1 <
Normes eau brute Normes eau mise en distribution 26/10/2000 26/10/2000 10/06/2004 04/11/2004 07/10/2008 Réf: arrêté du 11 jan NOVACELLES - BO Normes eau mise en distribution 23/10/2000 10/06/2004 17/05/2005 07/10/2008 22/10/2010 28/06/2016	Mini Maxi Moyenne NC - PALLAYES EST - CHARDET Unité Limite qualité Limite qualité Limite qualité DRAIN 1 (FACE) DRAIN 2 (DROITE AU FOND) PALLAYES EST - CHARDET BAS Vier 2007 relatif aux limites et référer Mini Maxi Moyenne DYER 1 Unité Limite qualité Limite qualité Limite qualité BOYER 1 BOYER 1	76,0 112,0 98,3 FET Fer total (µg/l) 200 41 28,0 41,0 34,5 FET Fer total (µg/l) 200 74 58 42	PESTOT Total des pesticides analysés (µg/l) 5 0,5 PESTOT Total des pesticides analysés (µg/l) 5 O,5 PESTOT Total des pesticides analysés (µg/l) 5 O,5	98,0 74,0 ALTMICR Aluminium total (µg/l) 200 62 39 39,0 62,0 50,5 ALTMICR Aluminium total (µg/l) 200 95 49	2,6 1,9 TAC Titre Alcalimétrique Complet (°f) 1,7 1,6 1,6 1,7 1,7 TAC Titre Alcalimétrique (°f) 2,2 2 1,8 2,6	TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <1 TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <1 TA Titre Alcalimétrique Simple (°f) <0,1 <0,1 <0,1	4,3 3,6 CA Calcium (mg/l) 2,9 3 2,9 3,0 3,0 CA Calcium (mg/l) 5,8 5,6 6,9 5,7 5,6	7,0 5,7 MN Manganèse (μg/l) 50 <5 <10,0 MN Manganèse (μg/l) 50 <5 <10,0 <5 <10,0 <5 <10,0 <5 <5 <5 <5 <5 <5 <55 <55,0 <10	1,7 1,5 MG Magnésium (mg/l) 1,7 1,7 1,7 1,7 MG Magnésium (mg/l) 1,7 1,5 1,8 1,46 1,5	SB Antimoine (μg/l) 5 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <5,0 <1,0 <1 <1 <1	<5 NI Nickel (μg/l) 20 <10,0 NI Nickel (μg/l) 20 <5 <5,0 <5	<0,10 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 HYDISSO Hydrocarbures dissous et émulsionnés (mg/l) 1 <0,1 <0,1 <0,1 <0,01 <0,1 <0,03 <0,03

FORAGE DE NOVA	ACELLES	FET	PESTOT	ALTMICR	TAC	TA	CA	MN	MG	SB	NI	HYDISSO
			Total des		Titre	Titre						Hydrocarbure
		Fer total	pesticides	Aluminium total		Alcalimétrique	Calcium	Manganèse	Magnésium	Antimoine	Nickel	dissous et
			analysés		Complet	Simple						émulsionnés
	Unité	(μg/l)	(μg/l)	(μg/l)	(°f)	(°f)	(mg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)	(mg/l)
Normes eau brute	Limite qualité		5									1
Normes eau mise en	Limite qualité		0,5							5	20	
distribution	Référence qualité	200		200				50				
23/05/2016	FORAGE DE NOVACELLES	78	<0,500	<10	6,65	0	8,1	160	6,22	<1	<5	<0,1
28/07/2016	FORAGE DE NOVACELLES	730			6,6			101				
10/10/2016	FORAGE DE NOVACELLES	30			6,35			141				
10/05/2017	FORAGE DE NOVACELLES	700	<0,500	<10	6,6	0	6,6	114	7,13	<1	<5	<0,1
Réf : arrêté du 11 jan	vier 2007 relatif aux limites et référ	er										
	Mini	30,0	<0,500	<10	6,4		6,6	101,0	6,2	<1	<5	<0,1
	Maxi	730,0	<0,500	<10	6,7	0,0	8,1	160,0	7,1	<1	<5	<0,1
	Movenne	384.5			6.6		7.4	129.0	6.7			

egis

SYNTHESE DES RESULTATS D'ANALYSES BACTERIOLOGIQUES ET PHYSICO-CHIMIQUES SUR LES TRT et CAP DU SIAEP DU HAUT LIVRADOIS

			CTF	STRF	ECOLI	CDT25	PH	TH	СОТ	NH4	NO3	NO2	AS	DTI
			coliformes totaux	entérocoques	escherichia coli	Conductivité à 25°C	PH	dureté	Carbone Organique Total	Ammonium	Nitrate	Nitrite	Arsenic	Dose totale indicative
			(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(µS/cm)	à 20°C	(°f)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(μg/l)	mSv/an
	Normes eau de distribution	Limite qualité		0/100 ml	0/100 ml					0,1	50	0,5	10	0,1
		Référence qualité	0/100ml			200-1100	6,5 - 9		2					
TRT REGARD D	DU BOIS DE LA MARUE													
09/06/2010	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	4	. 0	0	94,4	5,9	2	1,1	<0,05	7,3	<0,003		
17/08/2010	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	C	0	0		6,15	2	1	<0,05	6,9	<0,003	<0,5	<0,10
31/08/2011	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	C	0	0	57,2	5,8	1	0,6	<0,05	2,99	<0,003	<0,2	
09/08/2012	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	11	. 0) 2	80,3	6,3	2	1,8	<0,05	5,9	<0,003	<1,0	
23/05/2013	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	0) 0) 0	110,7	5,75	2,9	1,5	<0,05	7,3	0,003	,-	,
01/08/2013	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	4) 0	· · · · · · · ·	6,3	1,8	0,8	<0,05	6,1	<0,003	<1,0	< 0.1
15/05/2014	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	<1	<1	<1		6,6	7,4	1,3	<0,05	6,5	<0,01	12,0	1 5,2
21/05/2015	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	<1			-	6,4	2	0,5	<0,05	6,5	<0,01		
09/09/2015	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	<1	1			6,35	1,7	0,6	<0,05	5,5	<0,02	<2	<0,10
23/05/2016	MEDETROLLES	TRT REGARD DU BOIS DE LA MARUE	<1		+		6	2,3	0,5	<0,05	7,8	<0,02	```	<0,10
06/09/2016	MEDETROLLES	TRT REGARD DU BOIS DE LA MARUE	<1		+		6	1,7	0,3	<0,05	4,9	<0,02	<2	<0,100
10/05/2017	MEDETROLLES	TRT REGARD DU BOIS DE LA MARUE	<1	+	1	· -	6	2,3	1,5	<0,05	6,6	<0,02	\2	\0,100
22/08/2017	MEDETROLLES	TRT REGARD DU BOIS DE LA MARUE	<1			· · · · · · · · · · · · · · · · · · ·	6,3	1,7	0,4	<0,05	4,6	<0,02	<2	
22/00/2017	WEBETROLLS	Moyenr		. \1	` `1	95,37	6,14	2,37	0,92	\0,03	6,03	\0,02	\2	
MEL MONTHL	ES PALLAYES EST OUEST (SECOUR)	Woyelli	ie			93,37	0,14	2,37	0,32		0,03			
17/08/2010	ST ALYRE D'ARLANC	PT MISE EN DIST. ST ALYRE ST SAUV.			0	64,3	6,3	2	1,2	<0,05	2,8	<0,003	6,1	<0,10
TTP LIVRAISON		THINGE EN DIST. STALINE STOAGY.		,1	,	04,5	0,3		1,2	\0,03	2,0	\0,003	0,1	\0,10
31/08/2011	MEDEYROLLES	LIVRAISON CAP L'ESTIVAL		<u> </u>) 0	58,7	5,95	1,4	0,6	<0,05	2,11	<0,003		
09/08/2012	MEDEYROLLES	LIVRAISON CAP L'ESTIVAL) 0		6,1	1,4	1,2	<0,05	3,1	<0,003		
23/05/2013	MEDEYROLLES	LIVRAISON CAP L'ESTIVAL		0) 0	48,6	5,55	1,4		<0,05	2,6	0,003	<1,0	< 0,1
02/08/2013	MEDEYROLLES	LIVRAISON CAP L'ESTIVAL) 0) 0	53,8	5,55	1,1	1,4	<0,05	2,6	<0,003	<1,0	< 0,1
				1 11	0		ŭ		0,6					
15/05/2014	MEDEYROLLES	LIVRAISON CAP L'ESTIVAL Moyenr	<1	. <1	. <1	55 54,8	6,45 6,0	<1,00 1,3	1,0	<0,05	2,7 2,6	<0,01		
TTD LIVEAUCON	N MEDEYROLLES	Woyen	ie			54,6	0,0	1,3	1,0		2,0			
31/08/2011	MEDEYROLLES	LIVRAISON CAP JOUVET	1 3	1 0) 2	67.5	6.1	2	0.5	<0,05	2,11	<0,003	<0,2	<0.1
	MEDEYROLLES		53	2		/-	6,1		0,5	,		,	<0,2	<0,1
09/08/2012		LIVRAISON CAP JOUVET	23	3	30	61,2	6,3	1,7 1,5	1,6	<0,05	1,8	<0,003		
01/08/2013	MEDEYROLLES	LIVRAISON CAP JOUVET	3	-	3	64,6	6,3 6,23	1,73	<0,5 1,05	<0,05	1,3 1,74	<0,003		
TTD BASI ABICS	CARDE CHACTEL LA FAVE	Moyenr	ie			04,0	0,23	1,/3	1,05		1,74			
09/08/2012	MEDEYROLLES	MELANGE CAP LA GARDE ET DANSADOUR	1 .	<u> </u>) 0	46,9	6,2	1	2	<0,05	1,45	<0,003	<1,0	<0,1
			1	, 0) 0	65,6		1,6	<0,5	<0,05	3,6		<1,0	<0,1
01/08/2013	MEDEYROLLES MEDEYROLLES	MELANGE CAP LA GARDE ET DANSADOUR	1	. 0	1		6,4			<0,05		<0,003		
28/08/2015		MELANGE CAP LA GARDE ET DANSADOUR MELANGE CAP LA GARDE ET DANSADOUR	<1		+		6,5	1,3	0,7		2,8	<0,02		
23/08/2016 22/08/2017	MEDEYROLLES MEDEYROLLES	MELANGE CAP LA GARDE ET DANSADOUR	<1				6,3 6,5	1,6	0,4	<0,05 <0,05	4,5	<0,02 <0,02		
22/08/2017	WIEDETROLLES	Moyenr		`\	`\	59,4	6,4	1,3 1,4	0,3 0,9	<0,03	3,3 3,1	<0,02		
TOT DU DECED	VOIR CHARDET HAUT	Woyen	ie			33,4	0,4	1,4	0,9		3,1			
		TRT DIT BECERVOIR CHARDET HALIT		J 6) 0	56.2	6	2	1.2	<0.0E	2.0	<0.003		<0.1
09/06/2010	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	10	1 0	, 0	56,2 54,8	6,15	2 1,4	1,2 1,8	<0,05 <0,05	2,9 3,6	<0,003 0,005	5	<0,1
09/11/2010	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	53	_) 0	69,6	6,15			<0,05 <0,05	3,6	<0,003		
21/11/2011	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	53		1			2,4	1,7					
26/11/2012	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	1 12) 0 1	66,4	6,5	1,9	1,4	<0,05 <0,05	3,4	<0,003		
23/05/2013	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	12		, ===	-	5,6	1,3	1,8		3,4	0,004		
15/05/2014	ST ALVRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	<1				6,75	1	0,6	<0,05	2,5	<0,01		10.10
21/05/2015	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	<1	-			6,15	1,9	0,3	<0,05	2,5	<0,02	4	<0,10
10/11/2015	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	16		<1		5,8	2	0,6	<0,05	2,3	<0,02		1
23/05/2016	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	8	<u> </u>	. 8	,-	6	1,5	0,8	<0,05	2,9	<0,02		
29/11/2016	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	<1	1	+		6,1	2	1,7	<0,05	6,1	<0,02		1
10/05/2017	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	<1	. <1	. <1	,	6,1	1,8	0,8	<0,05	5	<0,02		
1		Moyenr	ie	I		63,91	6,15	1,75	1,15		3,49			1

SYNTHESE DES RESULTATS D'ANALYSES BACTERIOLOGIQUES ET PHYSICO-CHIMIQUES SUR LES TRT et CAP DU SIAEP DU HAUT LIVRADOIS

			ACTITR	RALPHA2	RBETA2	RBETA2R	ACTIK40	Cl	FMG	SO4	HG	K	NA	FET
			Activité tritium 3H	Activité alpha globale	Activité béta globale	Activité béta globale résiduelle	Activité béta attribuable au K40	Chlorure	Fluorures	Sulfates	Mercure	Potassium	Sodium	Fer total
			Bq/I	Bq/I	Bq/I	Bq/l	Bq/I	(mg/l)	(mg/l)	(mg/l)	(μg/l)	(mg/l)	(mg/l)	(μg/l)
	Normes eau de distribution	Limite qualité	100	si > 0,1 Bq/l analyse des radionucléides spécifiques	si > 1 Bq/l analyse des radionucléides spécifiques	v	-14	<i>X</i> 37 7	1,5	(3)	1	(3/ /	. 3. /	
		Référence qualité						250		250			200	200
TPT PEGAPO DI	J BOIS DE LA MARUE													
09/06/2010	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE						10,4		4,3				
17/08/2010	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	<7,80	<0,03	<0,06	<0,06	0,03	9,1	<0,1	5,2	<0,2	0,9	7,4	<10,0
31/08/2011	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	<7,70			<0,07	0,02	2,1	<0,5	5,3	<0,2	0,5	4,7	<10,0
09/08/2012	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	<8,40			<0,05	0,02	7,3	0,1	5,2	<0,05	1,1	6,8	<5,0
23/05/2013	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	15) 15	10,01	10,00	10,00	3,62	16,1	3,2	4,9	10,00	-/-	0,0	15,0
01/08/2013	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	< 11	0,02	< 0,09	< 0,09	N.M.	8,4	<0,10	5,5	<0,05	0,83	7,6	13
15/05/2014	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE		3,0_	3,00	3,55		8,8	3,23	4,6	5,55	3,00	.,,	
21/05/2015	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE						9,4		5				
09/09/2015	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	<8	<0,02	0,05	<0,040	0,025	5,7	0,07	4,7	<0,01	0,8	6,2	14
23/05/2016	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE		3,52	3,00	0,010	3,020	10,6	5,01	5,1	5,52	2,2	-,-	
06/09/2016	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	<9	<0,03	0,06	<0,040	0,025	5,7	0,05	4,9	<0,01	0,8	6,3	<10
10/05/2017	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE		,,,,,	,,,,,	-,-	1,1	13,8	2,22	5,4	-,-	-,-		
22/08/2017	MEDEYROLLES	TRT REGARD DU BOIS DE LA MARUE	<8	<0,03	0,04	<0,040	0,025	4,4	<0,05	4,6	<0,01	0,8	6,4	<10
	-	Moye	nne	,	,	,	,	8,60	•	4,98		0,82	6,49	
MEL MONTILLE	S PALLAYES EST OUEST (SECOUR)	·		·I	1			· .	Į.		Į.	· .	· · · · · · · · · · · · · · · · · · ·	
17/08/2010	ST ALYRE D'ARLANC	PT MISE EN DIST. ST ALYRE ST SAUV.	<7,80	<0,03	<0,05	<0,05	0,03	2,7	<0,1	2,6	<0,2	1	5,8	60
TTP LIVRAISON	L'ESTIVAL		,	· · · · · · · · · · · · · · · · · · ·	, ,	,	, ,	, ,	·	· .	· .	l	•	
31/08/2011	MEDEYROLLES	LIVRAISON CAP L'ESTIVAL						2,2		5,4				
09/08/2012	MEDEYROLLES	LIVRAISON CAP L'ESTIVAL						2,6		5,3				
23/05/2013	MEDEYROLLES	LIVRAISON CAP L'ESTIVAL	< 7	0,04	0,08	0,06	N.M.	2,5	<0,10	4,6	<0,05	0.6	1,8	<5,0
02/08/2013	MEDEYROLLES	LIVRAISON CAP L'ESTIVAL		-,-	,,,,,	-,		2,5	-, -	5,4	-,	-,-	,-	- 7-
15/05/2014	MEDEYROLLES	LIVRAISON CAP L'ESTIVAL						2,2		4,8				
	-	Moye	nne					2,4		5,1		0,6	1,8	
TTP LIVRAISON	MEDEYROLLES		_	1			<u> </u>	<u> </u>	<u>'</u>	<u>_</u>	<u> </u>	<u> </u>		<u> </u>
31/08/2011	MEDEYROLLES	LIVRAISON CAP JOUVET	<7,70	<0,05	<0,11	<0,11	0,03	2,1	<0,5	8,3		0,7	4,97	<10,0
09/08/2012	MEDEYROLLES	LIVRAISON CAP JOUVET						2,5		7,8				
01/08/2013	MEDEYROLLES	LIVRAISON CAP JOUVET						2,5		8,1				
		Moye	nne					2,37		8,07		0,70	4,97	
TTP MELANGE (GARDE CHASTEL LA FAYE		•											
09/08/2012	MEDEYROLLES	MELANGE CAP LA GARDE ET DANSADOUR	<8,30	<0,05	<0,06	<0,06	0,02	2,1	0,13	3,8	<0,05	1,2	3,8	<5,0
01/08/2013	MEDEYROLLES	MELANGE CAP LA GARDE ET DANSADOUR						4,3		3,7				
28/08/2015	MEDEYROLLES	MELANGE CAP LA GARDE ET DANSADOUR						1,9		3,6				
23/08/2016	MEDEYROLLES	MELANGE CAP LA GARDE ET DANSADOUR						3,7		3,4				
22/08/2017	MEDEYROLLES	MELANGE CAP LA GARDE ET DANSADOUR						1,9		3,6				
		Moyer	nne					2,8		3,6		1,2	3,8	
TRT DU RESERV	OIR CHARDET HAUT													
09/06/2010	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	<8,50	<0,02	<0,05	<0,05	0,02	2,5	<0,1	2,4	<0,0	0,9	4,4	60
09/11/2010	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT						2,4		3,1				
21/11/2011	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT						2		4,1				
26/11/2012	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT						2,2		2,9				
23/05/2013	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT						2,1		3,3				
15/05/2014	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT						2,8		2,5				
21/05/2015	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	<7	<0,02	0,07	0,042	0,031	2,1	0,05	2,4	<0,01	1	4,9	31
40/44/0045	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT						1,9		2,6				
10/11/2015														I
23/05/2016	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT						1,9		3,1				
		TRT DU RESERVOIR CHARDET HAUT TRT DU RESERVOIR CHARDET HAUT						2		3,5				
23/05/2016	ST ALYRE D'ARLANC											0,9	4,4	

SYNTHESE DES RESULTATS D'ANALYSES BACTERIOLOGIQUES ET PHYSICO-CHIMIQUES SUR LES TRT et CAP DU SIAEP DU HAUT LIVRADOIS

Total des pesticides Aluminium total Alcalimétrique Alcalimétrique Calcium Manganèse Magnésium Cuivre Plor analysés Complet Simple				DECTOT	ALTMACO	TAC	Т.	C A	N ANI	MC	C. di ma	55
Process				PESTOT Total des	ALTMICR	TAC	TA Titre	CA	MN	MG	Cuivre	PB
THE FEBRUARY DUE NOT SET AL MARKER 1.00					Aluminium total			Calcium	Manganèse	Magnésium	Cuivre	Plomb
Notice could distribution Notice coulds					((1)	'	· · ·		(/I)			(
Marchest 100				(μg/ι)	(μg/I)	(°f)	(°f)	(mg/l)	(μg/I)	(mg/l)	(mg/l)	(μg/l)
Section Sect		Novembro and distribution	Limite avalité	0.5								
THE TREATED DIA SOLD IA MANUE		Normes eau ae distribution	Limite qualite	0,5								
STEP SEARCH DU SOS DE LA MARQUE												
1.6 1.6			Référence qualité		200				50			
17/88/2010 MR-DRYNOLISS			1	1	·	_	, ,					
\$1,000,000 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000,000 1,000,000,000 1,000,000,000 1,000,000,000,000,000 1,000,000,000,000,000,000,000,000,000,0												
2008/2012 MEDEWOOLES IT! REGARD DU BISD DE LA MANUE 0 23 1.6 <0,1 5.1 0.9 1.3				<0,10	17							
23095/2013 MEDERFROLES INT RESARD DUE DS DE LA MANUE					9							
DUBBETON THE RECARD DUBBS DE LA MANUE				C	23	·		5,1	0,9	1,3		
1505/2014 MEDEPROLIES TET REGARD DU BOS DE LA MARUE												
21055/2015 MEDEPHOLLES INT REGARD DU BOS DE LA MARUE				C	15	1,5	<0,5	4,7	0,0009	1,4		
MODERNOLLES INT REGARD DU BOS DE LA MANUE						2	-					
23/05/2016 MEDERROLLES TRE RECARD DU BOS DE LA MARUE				0						1.00		
MICHAELS TRIT REGARD DU BIOS DE LA MARUE				<0,500) <u>27</u>			4,9	<10	1,22		
1005/2017 MEDEPROLLES TET REGARD DU BOIS DE LA MARUE				0.500					10	4.24		
MICHAROLIES				<0,500	10			4,8	<10	1,21		<u> </u>
Meth Monthilles Pallarys EST QUEST (SECQUR)				0.500					10	1.22		
MEL MONTHLES PALLAYE SET OUEST (SECOUR) 1/10/8/2010 1/2 1/	22/08/2017	MEDEYROLLES			(10				<10			
17/09/2010 ST ALYRE D'ABLANC PT MISE EN DIST. ST ALYRE ST SAUV. <0,10 37 2,1 <0,1 4,1 <10,0 1,7	2451 2402171115	C DALLAYES EST OLIEST (SECOLIE)		loyenne		1,45		4,76		1,24		
TP_UVRAISON_CESTIVAL				40.10	J 27	2.1	-0.1	4.1	410.0	1 7		
SUPERISON CAP L'ESTIVAL	· ·		PT MISE EN DIST. ST ALYRE ST SAUV.	<0,10	3/	2,1	<0,1	4,1	<10,0	1,/		
Mederrolles			LIV/DAICONI CAR LIECTIVAL		1	1.0	1					
23/05/2013 MEDEPROLLES LURAISON CAP L'ESTIVAL 0 10 1,2 <0,5 3,2 <0,0005 0,75	· ·											
1,4					10			2.2	10.0005	0.75		
15/05/2014 MEDEYROLLES					10			3,2	<0,0005	0,75		
TIT LIVERAISON MEDEYROLLES						1,4						
TTP LURAISON MEDEYROLLES	15/05/2014	MEDETROLLES		lovonno		1.6						
31/08/2011 MEDEYROLLES LUVRAISON CAP JOUVET 6 1,7 <0,1 4,6 <5,0 1,05	TTD LIVEAUCAN	MEDEVACITES	10	noyenne		1,0						
1,7 1,7 1,7 1,8 1,5			LIVENISON CAR IOUVET		1 6	1 7	-01	16	∠ E 0	1 05		
D1/08/2013 MEDEYROLLES					"		<0,1	4,0	\3,0	1,03		
Moyenne	,, -											
NELANGE GARDE CHASTEL LA FAYE	01/08/2013	WIEDETROLLES		Movenne								
09/08/2012 MEDEYROLLES MELANGE CAP LA GARDE ET DANSADOUR 0 6 1,5 < 0,1 3,1 < 0,5 0,8	TTP MEI ANGE	SARDE CHASTELLA FAVE	10		1	1,03	<u> </u>					
01/08/2013 MEDEYROLLES MELANGE CAP LA GARDE ET DANSADOUR 1,8			MELANGE CAPIA GARDE ET DANSADOLIR) 6	1 5	<∩ 1	3 1	<0.5	Λδ		
28/08/2015 MEDEYROLLES MELANGE CAP LA GARDE ET DANSADOUR 1,45					,			3,1	٠٥,٥	0,8		
23/08/2016 MEDEYROLLES MELANGE CAP LA GARDE ET DANSADOUR 1,4												
22/08/2017 MEDEYROLLES MELANGE CAP LA GARDE ET DANSADOUR 1,4 1,7												
Moyenne					1							
TRT DU RESERVOIR CHARDET HAUT	-,,,			Novenne								
09/06/2010 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT <0,10	TRT DU RESERV	OIR CHARDET HAUT			ı		<u> </u>					
09/11/2010 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 1,5 21/11/2011 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 2,4 26/11/2012 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 2,2 23/05/2013 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 1,4 15/05/2014 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 4 21/05/2015 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT <0,500			TRT DU RESERVOIR CHARDET HAUT	<0.10	47	1.8	<0.1	3.8	<10.0	1.5		
21/11/2011 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 2,4 26/11/2012 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 2,2 23/05/2013 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 1,4 15/05/2014 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 4 21/05/2015 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT <0,500				1,120	1			-,0		_,_		
26/11/2012 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 2,2												
23/05/2013 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 1,4 1,4 1,4 1,5 1,5 1,5 1,5 1,4 1,4 1,5 1,5 1,6 1,6 1,6 1,6 1,4 1,4 1,4 1,5 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,8					1							
15/05/2014 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 4 4 4,7 <10												
21/05/2015 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT <0,500						4						
10/11/2015 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 2,45				<0,500	44	2,4		4,7	<10	1,81		
23/05/2016 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 1,65 29/11/2016 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 1,65 10/05/2017 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 1,85		ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT	,				,				
29/11/2016 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 1,65 10/05/2017 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 1,85		ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT									
10/05/2017 ST ALYRE D'ARLANC TRT DU RESERVOIR CHARDET HAUT 1,85		ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT									
	10/05/2017	ST ALYRE D'ARLANC	TRT DU RESERVOIR CHARDET HAUT									
			N	Noyenne		2,12		3,8		1,5		

SYNTHESE DES RESULTATS D'ANALYSES BACTERIOLOGIQUES ET PHYSICO-CHIMIQUES SUR LES UDI DU SIAEP DU HAUT LIVRADOIS

			CTF	STRF	ECOLI	CDT25	PH	NH4	NO2	NO3	AS	CU	PB	FET	SB	N
			coliformes	entérocoques	escherichia coli	Conductivité à	PH	Ammonium	Nitrite	Nitrate	Arsenic	Cuivre	Plomb	Fer total	Antimoine	Nick
			totaux (UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	25°C (μS/cm)	à 20°C		(mg/l)		(μg/l)	(mg/l)	(μg/l)	(μg/l)	Antimome	INICA
			(OFC/100 IIII)	(OFC/100 IIII)	(0FC/100 IIII)	(μ5/cm)	a 20 C	(mg/l)	(mg/i)	(mg/l)	(μg/1)	(mg/i)	(μg/1)	(μg/1)		
	Normes eau de distribution	Limite qualité		0/100 ml	0/100 ml			0,1	0,5	50	10	0,1	100		5	20
		Référence qualité	0/100ml			200-1100	6,5 - 9							200		
LIVRADOIS																
	ST ALYRE D'ARLANC	BOURG	C	0	0	60,6	6,3	3 <0,05								
20/01/2011	ST ALYRE D'ARLANC	BOURG	8	3 0	0	57,7		<0,05								
	ST ALYRE D'ARLANC	BOURG	2	2 0	·	63,1		<0,05								
	ST ALYRE D'ARLANC	BOURG	(0	0	82,6		<0,05		1						
	ST ALYRE D'ARLANC ST ALYRE D'ARLANC	BOURG BOURG	57	2 0	/ /	62,1 62		<0,05 <0,05		-						
	ST ALYRE D'ARLANC	BOURG	19	9 < 1	<1	63		3 <0,05		1						
	ST ALYRE D'ARLANC	BOURG		L < 1	1	100		5 <0,05								
	ST ALYRE D'ARLANC	BOURG	<1	<1	<1	77		2 <0,05								
	ST ALYRE D'ARLANC	BOURG		< 1	< 1	63		<0,05								
	ST ALYRE D'ARLANC	BOURG	<1	<1	<1	61,1		5 <0,05 5 <0,05		1						
	ST ALYRE D'ARLANC ST ALYRE D'ARLANC	BOURG BOURG	<1 <1	<1	<1 <1	151,1 65,1		<0,05 L <0,05		1						
	ST ALYRE D'ARLANC	BOURG	<1	<1	<1	64,2		7 <0,05		1						1
	ST ALYRE D'ARLANC	BOURG	<1	<1	<1	97	6,2	2 <0,05								L
11/10/2016	ST ALYRE D'ARLANC	BOURG		<1	20			<0,05								
	ST ALYRE D'ARLANC	BOURG		2 <1	16			<0,05		1						
	'ST ALYRE D'ARLANC 'ST ALYRE D'ARLANC	BOURG BOURG	<1 <1	<1	<1 <1	61 111,6		3 <0,05 5 <0,05		1						1
	ST ALYRE D'ARLANC	BOURG	<1	<1	<1	63,5		0,05 0,05		+						
03/10/2017	31 ALTRE D'ARLANC	Moyenne		1	1	74,7	6,26			4,94 (1993 à 2	2003)					
09/06/2010	ST SAUVEUR LA SAGNE	BOURG	19	0	2	95,6		<0,05			,					
09/05/2011	ST SAUVEUR LA SAGNE	BOURG	4	1 0	0	83,2		<0,05								
	ST SAUVEUR LA SAGNE	BOURG	C	0	0	78,9		<0,05								
	ST SAUVEUR LA SAGNE	BOURG	(0	0	94,4		<0,05	<0,003			0,108	0,5	6	<0,5	
03/04/2014	ST SAUVEUR LA SAGNE	BOURG Moyenne	<1	<1	<1	77 85,8	6,2 6, 1	2 <0,05		4,94 (1993 à 2	2002)					
12/01/2010	SIAEP HAUT LIVRADOIS	ivioyenne	2) 0) 0	80,9		1 <0,05		4,54 (1555 a 2	2003)					
	SIAEP HAUT LIVRADOIS		(- <u> </u>		78,8		2 <0,05		1						
	SIAEP HAUT LIVRADOIS		2	2 0	0	87,8		L <0,05								
23/12/2010	SIAEP HAUT LIVRADOIS		(0	0	95,8		<0,05								
	SIAEP HAUT LIVRADOIS		g	0	0	82		<0,05								
	SIAEP HAUT LIVRADOIS		2	2 0	0	96,3		<0,05		1						-
	SIAEP HAUT LIVRADOIS SIAEP HAUT LIVRADOIS	-	() 0	0	91,7 80,8		<0,05 5 <0,05		+						
	SIAEP HAUT LIVRADOIS		3	3 0		75,3		<0,05								
	SIAEP HAUT LIVRADOIS		(0	0	76,8		<0,05								
31/08/2011	SIAEP HAUT LIVRADOIS		8	3 1	. 2	79,7	6,25	<0,05								
	SIAEP HAUT LIVRADOIS		8	3 0		93,1		<0,05								
	SIAEP HAUT LIVRADOIS		(0	· ·	83,7		<0,05								
	SIAEP HAUT LIVRADOIS SIAEP HAUT LIVRADOIS		3	3 0	U	72,1 147,7		<0,05 <0,05	1	1					1	
	SIAEP HAUT LIVRADOIS) 1	, <u>U</u>	106,5		3 <0,05		1						1
	SIAEP HAUT LIVRADOIS		0	0 0	0	88,5		<0,05		1						1
	SIAEP HAUT LIVRADOIS		2	2 0	0	83,5	6,4	<0,05								
	SIAEP HAUT LIVRADOIS		(1		81,6		<0,05								
	SIAEP HAUT LIVRADOIS		1	1 0		79,2		<0,05		1						
	SIAEP HAUT LIVRADOIS SIAEP HAUT LIVRADOIS		2	0		132,6 106,4		<0,05 <0,05	1	1					1	
	SIAEP HAUT LIVRADOIS			1 < 1	< 1	106,4	6,25		7	1						
	SIAEP HAUT LIVRADOIS			< 1	<1	96		0,05								1
03/04/2014	SIAEP HAUT LIVRADOIS		<1	<1	<1	131	7,1	<0,05								L
	SIAEP HAUT LIVRADOIS		< 1	< 1	< 1	93		2 <0,05								
	SIAEP HAUT LIVRADOIS		<1		< 1	88		<0,05		1						
	SIAEP HAUT LIVRADOIS			< 1	< 1	95		<0,05	-							
	SIAEP HAUT LIVRADOIS SIAEP HAUT LIVRADOIS		<1	l < 1 <1	<1	137 121,6		0 <0,05 5 <0,05		-						-
	SIAEP HAUT LIVRADOIS		<1	<1	<1	121,6		2 <0,05	+	+		 				1
	SIAEP HAUT LIVRADOIS		<1	<1	<1	175,1		<0,05								
	SIAEP HAUT LIVRADOIS			1 <1	1	119	6,4	<0,05								L
	SIAEP HAUT LIVRADOIS		<1	<1	<1	145		<0,05								
	SIAEP HAUT LIVRADOIS		(0	0	80	6,2)							
	SIAEP HAUT LIVRADOIS		<1	<1	<1	93,7		<0,05		1						
	SIAEP HAUT LIVRADOIS SIAEP HAUT LIVRADOIS		<1 <1	<1	<1 <1	132,1 86,4		<0,05 <0,05	-							
TT/0T/2010	DIALE HAUT FINDADOID		<1	<1	<1	80,4		3 <0,05	1	1		1	ļ			1

SYNTHESE DES RESULTATS D'ANALYSES BACTERIOLOGIQUES ET PHYSICO-CHIMIQUES SUR LES UDI DU SIAEP DU HAUT LIVRADOIS

			CTF	STRF	ECOLI	CDT25	PH	NH4	NO2	NO3	AS	CU	PB	FET	SB	NI
			coliformes	entérocoques		Conductivité à	PH	Ammonium	Nitrite	Nitrate	Arsenic	Cuivre	Plomb	Fer total	Antimoine	Nickel
			totaux (UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	25°C (μS/cm)	à 20°C	(mg/l)	(mg/l)	(mg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)	Antimome	Nickei
			(OFC/100 IIII)	(OFC/100 IIII)	(0FC/100 IIII)	(μ5/cm)	a 20 C	(mg/i)	(mg/i)	(mg/i)	(μg/1)	(mg/i)	(μg/1)	(μg/1)		
	Normes eau de distribution	Limite qualité		0/100 ml	0/100 ml			0,1	0,5	50	10	0,1	100		5	20
		Référence qualité	0/100ml			200-1100	6,5 - 9							200		
17/02/2016	SIAEP HAUT LIVRADOIS		<1	<1	<1	93,3	6.15	<0,05								
	SIAEP HAUT LIVRADOIS		<1	<1	<1	151		<0,05								
05/08/2016	SIAEP HAUT LIVRADOIS		2	<1	2	81	6,2	<0,05								
	SIAEP HAUT LIVRADOIS		<1	<1	<1	76,2		<0,05								
	SIAEP HAUT LIVRADOIS		<1	<1	<1	100,3		<0,05								
	SIAEP HAUT LIVRADOIS SIAEP HAUT LIVRADOIS		<1	<1	<1	128,5		<0,05 <0,05					1			
	SIAEP HAUT LIVRADOIS		<1 <1	<1 <1	<1 <1	94,1 97,3		<0,05								
	SIAEP HAUT LIVRADOIS		<1	<1	<1	140,1		<0,05								
	SIAEP HAUT LIVRADOIS		<1	<1	<1	75,8		<0,05								
	SIAEP HAUT LIVRADOIS		<1	<1	<1	70,5	6,1	<0,05								
21/09/2017	SIAEP HAUT LIVRADOIS			<1	<1	73		<0,05								
		Moyenne				99,2	6,4			5,37 (1993 à	2003)					
CHADENAS	NOVACELLES	CHADENAS	1 0		n -	40 7	C 05	<0,05	I				1			I
	NOVACELLES	CHADENAS CHADENAS	9	`	-			<0,05 <0,05					1			
	NOVACELLES	CHADENAS	2		-			<0,05			 		+	 		
	NOVACELLES	CHADENAS	0) (•			<0,05					†			
	NOVACELLES	CHADENAS	0) (-	35,7		<0,05								
03/04/2014	NOVACELLES	CHADENAS	<1	<1	<1	36	6,25	<0,05								
25/09/2014	NOVACELLES	CHADENAS	< 1	< 1	< 1	40		<0,05								
	NOVACELLES	CHADENAS	<1	<1	<1	92,5		<0,05								
	NOVACELLES	CHADENAS	<1	<1	<1	64		<0,05								
	NOVACELLES	CHADENAS	<1	<1	<1	45,6		<0,05 <0,05					1			
	NOVACELLES NOVACELLES	CHADENAS CHADENAS	<1 <1	<1 <1	<1	41,9 39,8		<0,05		+			-			
	NOVACELLES	CHADENAS		<1	<1	45,8		<0,05		+						
21,03,201,		Moyenne		-		46,1	6,3			2,35 (1993 à	2003)					
ISSARD BESSE LA SAVO	DIE	·			L						·				· ·	
29/01/2010	NOVACELLES	LA SAVOIE	6	j (0	64,3		<0,05			<5,0					
	NOVACELLES	LA SAVOIE	2		0			<0,05			3,7	,				
	NOVACELLES	LA SAVOIE	38		-	/-		<0,05			<1,0					
	NOVACELLES	LA SAVOIE	0) (0	77,7	5,7	<0,05		ļ	<1,0					
	NOVACELLES	LA SAVOIE BESSE	?	?) (?	?	?			?		1			
	ST SAUVEUR LA SAGNE ST SAUVEUR LA SAGNE	BESSE	8	i < 1	2	77,1		<0,05 <0,05	<0,02	+	2,4	0,186	5 0,7	2/1	<0,50	
	ST ALYRE D'ARLANC	TREMOULET	< 1	<1	<1	67	0,3	<0,05	<0,02		3,77		0,7	34	<0,30	
	ISSARD BESSE LA SAVOIE	······································		< 1	3	69	6,5	<0,05			<0,02					
	ISSARD BESSE LA SAVOIE			<1	<1	122,3		<0,05			-,-	<2				
21/04/2015	ISSARD BESSE LA SAVOIE		<1	<1	<1	157,5		<0,05				3	3			
	ISSARD BESSE LA SAVOIE		24		9 24			<0,05				4	1			
	ISSARD BESSE LA SAVOIE			<1	1	. 72		<0,05								
	ISSARD BESSE LA SAVOIE		<1	<1	<1	72,6		<0,05				4	1			
	ISSARD BESSE LA SAVOIE ISSARD BESSE LA SAVOIE		<1	<1 <1	<1 <1	95,7 55		<0,05 <0,05			-	 	1	-		
	ISSARD BESSE LA SAVOIE		<1	<1	<1	71,4		<0,05					1			<u> </u>
	ISSARD BESSE LA SAVOIE		<1	<1	<1	67,4		<0,05				3	3			
	ISSARD BESSE LA SAVOIE		<1	<1	<1	65,8	6,2	<0,05				:	3			
21/09/2017	ISSARD BESSE LA SAVOIE		3	<1	2	76,7		<0,05				3	3			
		Moyenne				78,1	6,2			2,34 (1993 à	3,3	3,1	L			
LA GARDE - CHASTEL																
	MEDEYROLLES	LA GARDE	0		9			<0,05								
	MEDEYROLLES MEDEYROLLES	LA GARDE LA GARDE	0	`	-	,-		<0,05 <0,05			-		 	-		
	MEDEYROLLES MEDEYROLLES	LA GARDE	0		-	47,8		<0,05				1	+			1
	MEDETROLLES	LA GARDE	1) 0	73,3		<0,05					†			
	MEDEYROLLES	LA GARDE	0			72,7		<0,05	<0,003			0,112	2 <0,5	19	<0,5	
25/09/2014	MEDEYROLLES	LA GARDE	1	< 1	< 1	87		<0,05								
	MEDEYROLLES	LA GARDE	<1	<1	<1	88,6	6,15									
	MEDEYROLLES	LA GARDE	<1	<1	<1	61,3	6,25									
	MEDEYROLLES	LA GARDE	<1	<1	<1	71,8	6,5									
	MEDEYROLLES	LA GARDE	<1	<1	<1	48,7	6,1						1			
	MEDEYROLLES	LA CARDE	<1	<1	<1	64	6,2						1			
24/07/2017	MEDEYROLLES	LA GARDE Moyenne	<1	<1	<1	62,5 65,1	6,4 6,2				-		 	-		
L'ESTIVAL	l	ivioyenne	1	1	1	03,1	0,2		<u> </u>	ĺ	<u> </u>	1	1	<u> </u>		<u> </u>
	MEDEYROLLES	L'ESTIVAL) (0 0	56,8	6	<0,05								
	MEDETROLLES	L'ESTIVAL	0		0 0			<0,05								
55, 55, 2010	1	1			- 1	57,2	2,03	0,00	Ī	Ī	Ī.	i .	i .	i	1	

SYNTHESE DES RESULTATS D'ANALYSES BACTERIOLOGIQUES ET PHYSICO-CHIMIQUES SUR LES UDI DU SIAEP DU HAUT LIVRADOIS

	NESCETATS D'ANALTSES DACT		CTF	STRF	ECOLI	CDT25	PH	NH4	NO2	NO3	AS	CU	PB	FET	SB	NI
			coliformes			CD123 Conductivité à										
			totaux	entérocoques	escherichia coli	25°C	PH	Ammonium	Nitrite	Nitrate	Arsenic	Cuivre	Plomb	Fer total	Antimoine	Nickel
			(UFC/100 ml)	(UFC/100 ml)	(UFC/100 ml)	(μS/cm)	à 20°C	(mg/l)	(mg/l)	(mg/l)	(μg/l)	(mg/l)	(μg/l)	(μg/l)		
		Limite qualité		0/100 ml	0/100 ml			0,1	0,5	50	10	0,1	100		5	20
	Normes eau de distribution															
		Référence qualité	0/100ml			200-1100	6,5 - 9							200		
21/09/2010	MEDEYROLLES	L'ESTIVAL	2	() 0	56,7	6.1	<0,05								
	MEDEYROLLES	L'ESTIVAL	0		<u> </u>	54		<0,05								+
	MEDETROLLES	L'ESTIVAL	0		,			<0,05								+
	MEDEYROLLES	L'ESTIVAL	3	,		58,6		3 <0,05				-				+
	MEDEYROLLES	L'ESTIVAL	0) 0	58,6		3 <0,05								
	MEDEYROLLES	L'ESTIVAL	0		-	57,9		<0,05								
	MEDEYROLLES	L'ESTIVAL	0	0	0 0	59,7	5.65	<0,05								
	MEDEYROLLES	L'ESTIVAL	0	C	0	55		<0,05	<0,003			0,0669	<0,5	<5,0	<0,5	<0,5
	MEDEYROLLES	L'ESTIVAL	< 1	< 1	< 1	59		3 <0,05								
15/01/2015	MEDEYROLLES	L'ESTIVAL	<1	<1	<1	89,8	6,2	2 <0,05								1
15/04/2015	MEDEYROLLES	L'ESTIVAL	<1	<1	<1	68,2	6,45	<0,05								
30/09/2015	MEDEYROLLES	L'ESTIVAL	<1	<1	<1	96,1	Ε	<0,05								
	MEDEYROLLES	L'ESTIVAL	<1	<1	<1	59,4		<0,05								
	MEDEYROLLES	L'ESTIVAL	<1	<1	<1	59,8		<0,05								
	MEDEYROLLES	L'ESTIVAL	<1	<1	<1	57,9		<0,05								
	MEDEYROLLES	L'ESTIVAL	<1	<1	<1	56,6		<0,05								<u> </u>
	MEDEYROLLES	L'ESTIVAL	<1	<1	<1	55,8		<0,05								
21/09/2017	MEDEYROLLES	L'ESTIVAL	<1	<1	<1	59,2		<0,05								
		Moyenne				61,5	6,1	L		1,67 (1993 à 2	2003)					
MEDEYROLLES	1. 450.5V0.0V.50	Inquino	1 -	1 -					1	1	1	Т	1	1	1	
	MEDEYROLLES	BOURG	0	(0.70		<0,05								
	MEDEYROLLES	BOURG	0	(50,7		<0,05	.0.000			0.47	1 .2 0	100	-1.0	-5.0
	MEDEYROLLES	BOURG	4	(0	64,5 58	6,25	<0,05	<0,003			0,17	<2,0	<10,0	<1,0	<5,0
	MEDEYROLLES MEDEYROLLES	BOURG BOURG	0	(0	65,1		<0,05 <0,05								
	MEDEYROLLES	BOURG	0	(65,5		<0,05 <0,05								
	MEDEYROLLES	BOURG	6			61,5		3 <0,05								+
	MEDETROLLES	BOURG	1	< 1	< 1	67		6 <0,05								+
	MEDETROLLES	BOURG		<1	<1	65		<0,05				<u> </u>	-			+
	MEDEYROLLES	BOURG		<1	<1	60,5		3 <0,05								
	MEDEYROLLES	BOURG	25		3 25			<0,05								
	MEDEYROLLES	BOURG		<1	<1	103,9		<0,05								
	MEDEYROLLES	BOURG		<1	1	93,2		<0,05								
25/01/2016	MEDEYROLLES	BOURG	<1	<1	<1	68,1	7	7 <0,05								1
	MEDEYROLLES	BOURG	<1	<1	<1	63,5		<0,05				0,233	<2			
03/10/2016	MEDEYROLLES	BOURG	<1	<1	<1	92,5	6,8	<0,05								
12/01/2017	MEDEYROLLES	BOURG	<1	<1	<1	66,3	6,2	<0,05	<0,02							
	MEDEYROLLES	BOURG		<1	8	69,4		<0,05								
09/10/2017	MEDEYROLLES	BOURG	<1	<1	<1	67,2		<0,05								
		Moyenne				69,8	6,3	3		3,09 (1993 à 2	2003)	0,202	2			
NOVACELLES			1						1	_	1		1			
	NOVACELLES	BOURG	84		1 '	85,7		<0,05		-				-		
	NOVACELLES	BOURG	39		•	89,1		<0,05		1				1	<u> </u>	
	NOVACELLES	BOURG	50		1	86,4		<0,05	40.003	1		0.00	40.5		140 5	
	NOVACELLES	BOURG	86 10					<0,05	<0,003	1			<0,5		2 <0,5 0 <0,5	0,8
	NOVACELLES NOVACELLES	BOURG BOURG		<1	<1	92,8 87		7 <0,05 3 <0,05	<0,003	+		0,0198	\U,5	110	, <u,5< td=""><td>0,6</td></u,5<>	0,6
	NOVACELLES NOVACELLES	BOURG	^1		<1 l < 1	88		3 <0,05 3 <0,05		+				+		+
	NOVACELLES	BOURG	<1	<1	<1	183,9		<0,05 <0,05		+						+
	NOVACELLES	BOURG		<1	<1	93,4		<0,05 <0,05	1	1			1	1	1	+
	NOVACELLES	BOURG		<1	<1	93,4		3 <0,05		+				+	1	+
	NOVACELLES	BOURG	<1	<1	<1	86,4		0,05		1				1	1	+
	NOVACELLES	BOURG	<1	<1	<1	88,6		7 <0,05		1				1	1	†
	NOVACELLES	BOURG	<1	<1	<1	89,4	7,7	7 <0,05		1						<u> </u>
22,00,2017		Moyenne	_	† -	1 -	90,3	6,8			1,84 (de 1993	à 2003)	0,087			1	
		yeime	l .	1	i .	50,0	3,0	1		-, (46 1555	/	5,507	1	1	1	

SOMMAIRE

Par commune

• Commune de MEDEYROLLES

DANSADOUR, LA GARDE LA FAYOLLE SOUS LES FAYARDS LE LAVOIR LA MARUE JOUVET L'ESTIVAL

• Commune de SAINT-ALYRE-D'ARLANC

LES MONTILLES PALLAYES OUEST PALLAYES EST

• Commune de NOVACELLES

BOYER 1

Radioanalyse

Commune de MEDEYROLLES

DANSADOUR

Bulletin d'analyse

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND

SIAEP HAUT-LIVRADOIS **63220 ARLANC**

Réf: 206817

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES

Captage DANSADOUR

Captage

Réception au laboratoire :

24/08/2006 14:09:46

Prélèvement effectué le :

24/08/2006 10:30:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyses bactériologiques

Analyse	Résultat	Incert.	Limite de Qualité	Réalisé le	Méthode
© Coliformes Totaux	0 UFC/100 ml			24/08/2006	NF EN ISO 9308-1
© Escherichia coli	0 UFC/100 ml		x <= 20000	24/08/2006	NF EN ISO 9308-1
© Entérocoques	0 UFC/100 ml		x <= 10000	24/08/2006	NF EN ISO 7899-2
© Spore Bactérie Sulfito-réductrice	0 UFC/100 ml		x < 1	24/08/2006	NF EN 26461-2
© Dénombrement à 22°	0 UFC/ml			24/08/2006	NF EN ISO 6222
© Dénombrement à 37°	0 UFC/ml			24/08/2006	NF EN ISO 6222

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 1 de 6

cofrac

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES

DE MEDECINE **CLERMONT-FERRAND**

ET DE

PHARMACIE CEDEX 01 - FRANCE -

28. TEL: 04 73 28 84 50

PLACE HENRI DUNANT FAX: 04 73 28 84 55

Bulletin d'analyse

(Suite.)

Réf: 206817

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage DANSADOUR

Captage

Réception au laboratoire :

24/08/2006 14:09:46

Prélèvement effectué le :

24/08/2006 10:30:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyses chromatographiques

Analyse	Résultat	Incert.	Limite de Qualité	Réalisé le	Méthode
Hydrocarbures Polycyclique	s Aromatiques			30/08/2006	NF EN ISO 17993
- Fluoranthène	<0,001 µg/l				
- Benzo(b)fluoranthène	<0,006 µg/l				
 Benzo(k)fluoranthène 	<0,002 µg/l				
- Benzo(a)pyrène	<0,001 µg/l				
 Benzo(ghi)pérylène 	<0,02 µg/l				
 Indeno(1,2,3-cd)pyrène 	<0,02 µg/l				
 Total des 6 subsances 	<0,020 µg/l				
© Solvant Chlorés Volatils				29/08/2006	Methode interne
- Benzène	<0,2 µg/l				
- 1,2-Dichloroéthane	<0,2 µg/!				
- Trichloroéthylène	<0,2 µg/l				
 1,1,2,2-Tétrachloroéthylène 	<0,2 µg/l				
- Tri+Tetra Chloréthylène	<0,2 µg/l				
© Pesticides organoazotés				31/08/2006	NF EN ISO 10695
- Atrazine	<0,01 µg/l				
- Simazine	<0,01 µg/l				
Propazine	<0,01 µg/l				
 Déséthylatrazine 	<0,01 µg/l				
 Désisopropylatrazine 	<0,01 µg/l				
- Cyanazine	<0,01 µg/l				
 Terbuthylazine 	<0,01 µg/l				
- Terbuméton	<0,01 µg/l				
© Pesticides organophosphorés	•			04/09/2006	NF EN ISO 10695
- Dimethoate	<0,01 µg/l				
- EPN	<0,01 µg/l				
- Malathion	<0,01 µg/l				
- Monocrotophos	<0,01 µg/l				
- Parathion	<0,01 µg/l				
- Sulfotepp	<0,01 µg/l				
- TEPP	<0,01 µg/l				

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 2 de 6

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE ESSAIS SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

DE MEDECINE PHARMACIE PLACE HENRI DUNANT 63001 **CLERMONT-FERRAND** CEDEX 01 - FRANCE -TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

NSTITUT LOUISE BLANQUET LABORATOIRE DE CONTRÔLE DES EAUX LABORATOIRE AGRÉÉ POUR LES ANALYSES HYDROLOGIQUES

Bulletin d'analyse

(Suite.)

Réf: 206817

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage DANSADOUR

Captage

Réception au laboratoire :

24/08/2006 14:09:46

Prélèvement effectué le :

24/08/2006 10:30:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Pesticides totaux calculés

<0,01 µg/l

05/09/2006 Calculé

28/08/2006 Méthode ILB

© Phényl-urées

<0,01 µg/l

Diuron Isoproturon

<0,01 µg/l

Linuron

<0,01 µg/l

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 3 de 6

FACULTES

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE ESSAIS SUR DEMANDE

DE

Remarques concernant ce rapport: Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

ET DE **PHARMACIE**

PLACE HENRI 28,

DUNANT FAX: 04 73 28 84 55

MEDECINE

CEDEX 01 - FRANCE -

63001 **CLERMONT-FERRAND** TEL: 04 73 28 84 50

Bulletin d'analyse

(Suite.)

Réf: 206817

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage DANSADOUR

Captage

Réception au laboratoire :

24/08/2006 14:09:46

Prélèvement effectué le :

24/08/2006 10:30:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyses physico-chimiques

A	nalyse	Résultat	Incert.	Limite de Qualité	Réalisé le	Méthode
0	Conductivité à 25°C	72.1 µS/cm			24/08/2006	NF EN 27888
0	Couleur (quantitatif)	<5 Hazen			24/08/2006	NF EN ISO 7887
C	Calcium	5.20 mg/l			25/08/2006	NF EN ISO 7980
C	pH à 20°C	5.80 Unités pH			24/08/2006	NF T 90-008
C	pH après marbre (à 20°C)	6.70 Unités pH			28/08/2006	NF T 90-008
C	Titre Alcalimétrique Complet (TAC)	2.0 °F			25/08/2006	Méthode ILB
0	T.A.C. après marbre	7.3 °F			28/08/2006	Méthode ILB
	Hydrogénocarbonates (HCO3)	24.00 mg/l			30/08/2006	Calculé
©	Titre Alcalimétrique (TA)	<0,1 °F			24/08/2006	Méthode ILB
	Carbonates (CO3)	0.00 mg/l			25/08/2006	Calculé
0	Magnésium	1.20 mg/l			25/08/2006	NF EN ISO 7980
	Titre Hydrotimétrique Total (THT) 2.00 °F			30/08/2006	Calculé
0	Turbidité	<0,2 NTU			24/08/2006	NF EN ISO 7027
O	Ammonium	<0,05 mg NH4/I		x <= 4,00	25/08/2006	NF EN ISO 11732
O	Sodium	6.3 mg/l		x <= 200,0	25/08/2006	NF T 90-019
0	Nitrites	<0,003 mg NO2/I			25/08/2006	NF EN ISO 13395
0	Nitrates	3.90 mg NO3/I		x <= 50	24/08/2006	NF EN ISO 10304-1
0	Chlorures	4.9 mg/l		x <= 200,0	24/08/2006	NF EN ISO 10304-1
0	Agents de surface anioniques	<0,1 mg SABM/I		x <= 50	28/08/2006	NF EN 903
0	Sulfates	2.7 mg/l		x <= 250,0	24/08/2006	NF EN ISO 10304-1
0	Potassium	1.1 mg/l			29/08/2006	NF T 90-019
©	Oxygène dissous	7.4 mg O2/I			24/08/2006	NF EN 25814
0	Fluorures	<0,05 mg/l			24/08/2006	NF EN ISO 10304-1
0	Indice Phénol	<0,025 mg/l		x <= 0,100	28/08/2006	XP T 90-109
	Cyanures totaux	<10 µg/l			31/08/2006	NF EN ISO 14403
0	Indice Hydrocarbures	<0,1 mg/l		x <= 1,00	01/09/2006	NF EN ISO 9377-2
C	Carbone Organique Total	0.55 mg C/l			31/08/2006	NF EN 1484
©	Oxydabilité à chaud en milieu acide	<0,5 mg O2/l		x <= 10,0	24/08/2006	NF EN ISO 8467
	Anhydride carbonique libre	5.8 mg CO2/I			24/08/2006	NF T 90-011

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 4 de 6

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE ESSAIS SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole C sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE **CLERMONT-FERRAND**

DE PHARMACIE CEDEX 01 - FRANCE -

PLACE HENRI DUNANT TEL: 04 73 28 84 50

FAX: 04 73 28 84 55

Bulletin d'analyse

(Suite.)

Réf: 206817

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage DANSADOUR

Captage

Réception au laboratoire :

24/08/2006 14:09:46

Prélèvement effectué le :

24/08/2006 10:30:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyses de radioactivité (analyses sous traitées)

Analyse	Résultat		Incert.	Limite de Qualité	Réalisé le	Méthode
Activité Alpha Globale	<0,02 Bq/L				08/09/2006	
Activité Beta Globale	<0,06 Bq/L				08/09/2006	NF M 60-800
Activité volumique Tritium	<8,80 Bq/L					NF M 60-802-1
Dose Totale Indicative	<0,1 mSv/an				14/09/2006	, , , , , , , , , , , , , , , , , , , ,
		Mesures sur	le terrain			

Analyse		Résultat	Incert. Limite de C	Limite de Qualité	Réalisé le	Méthode
	Aspect (qualitatif)	Normal			24/08/2006	Méthode ILB
	Hydrogène sulfuré	Normal			24/08/2006	Méthode ILB
	Température de l'eau	8.5 °C		x <= 25,0	24/08/2006	Méthode ILB
	Température de l'air	15.0 °C			24/08/2006	Méthode ILB
O	pH	7.10 Unités pH			24/08/2006	NF T 90_008

Analyses de traces inorganiques

	i many or an alabo morganiquos						
P	nalyse	Résultat		Incert.	Limite de Qualité	Réalisé le	Méthode
(Aluminium	0.007 mg/l				28/08/2006	NF EN ISO 11885
@	Antimoine	<0,005 mg/l				25/08/2006	NF EN ISO 17294-2
©	Arsenic	<0,005 mg/l			x <= 0,100	25/08/2006	NF EN ISO 15586
C	Baryum	<0,05 mg/l			x <= 1,000	28/08/2006	NF EN ISO 11885
C	Bore	<0,05 mg/l				28/08/2006	NF EN ISO 11885
C	Cadmium	<0,0005 mg/l			x <= 0,0050	25/08/2006	NF EN ISO 17294-2
C	Chrome total	<0,002 mg/l			x <= 0,050	25/08/2006	NF EN ISO 11885
C	Cuivre	<0,002 mg/l				25/08/2006	NF EN ISO 11885
C	Fer	0.065 mg/l				25/08/2006	NF EN ISO 11885
C	Manganèse	<0,005 mg/l				25/08/2006	NF EN ISO 11885
C	Mercure	<0,0002 mg/l			x <= 0,0010	28/08/2006	NF EN 1483
C	Nickel	<0,005 mg/l			,	25/08/2006	NF EN ISO 11885
0	Plomb	<0,005 mg/l			x <= 0.050	29/08/2006	NF EN ISO 17294-2
0	Sélénium	<0,005 mg/l			x <= 0,010	25/08/2006	NF EN ISO 15586
O	Zinc	<0,030 mg/l			x <= 5.000		NE EN ISO 11885

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 5 de 6

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE SUR DEMANDE

Remarques concernant ce rapport!

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

DE **PHARMACIE** CEDEX 01 - FRANCE -

PLACE HENRI TEL: 04 73 28 84 50

FAX: 04 73 28 84 55

NSTITUT LOUISE BLANQUET LABORATOIRE DE CONTRÔLE DES EAUX LABORATOIRE AGRÉÉ POUR LES ANALYSES HYDROLOGIQUES

Bulletin d'analyse

(Suite.)

Réf: 206817

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage DANSADOUR

Captage

Réception au laboratoire :

24/08/2006 14:09:46

Prélèvement effectué le :

24/08/2006 10:30:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Balance Ionique

Anions	mg/l	mEq/I
Carbonates (CO3)	0.00	0,00
Chlorures	4.9	0,14
Fluorures	<0,05	0,00
Hydrogénocarbonates (HCO3)	24.00	0,39
Nitrates	3.90	0,06
Nitrites	<0,003	0,00
Sulfates	2.7	0,06

Total:

0,65 mEq/l

Cations	mg/i	mEq/I
Aluminium	0.007	0,00
Ammonium	<0,05	0,00
Baryum	<0,05	0,00
Calcium	5.20	0,26
Cuivre	<0,002	0,00
Fer	0.065	0,00
Magnésium	1.20	0,10
Manganèse	<0,005	0,00
Plomb	<0,005	0,00
Potassium	1.1	0,03
Sodium	6.3	0,27
Zinc	<0,030	0,00

Total:

0,67 mEq/l

Balance:

1,13%

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette Responsable de la diffusion : ALAMÉ Josette

Page 6 de 6

Man

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND ET DE PHARMACIE CEDEX 01 - FRANCE -

- 28, PLACE HENRI TEL: 04 73 28 84 50 DUNANT - B.P. 38 FAX: 04 73 28 84 55

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 124670

Produit : Eau de consommation humaine au point de mise en distribution (Code de la Santé Publique -

article R 1321-1 et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOU

DANS CAPTAGE

Réception au laboratoire le 14 Septembre 2004 à 13h55

Prélèvement effectué le

14 Septembre 2004 à 10h30 par BASSO S., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Incert.	Limite de Qualité	Méthode
	Normal			Méthode ILB
Aspect (qualitatif)	Non Déterminé			Méthode ILB
Chlore résiduel total (mg/l)	Non Déterminé			Méthode ILB
nlore résiduel libre (mg/l)	Non Déterminé			Méthode ILB
Bioxyde de chlore (mg Cl2/1)	Non Déterminé		0.0 - 200.0	Méthode ILB
Chlorite (µg/l)			0.0 - 25.0	Méthode ILB
Température de l'eau (°C)	6.0			

DETERMINATIONS PHYSICO-CHIMIQUES

	Résultat	Incert.	Limite de Qualité	Méthode
0000 (774) (0 771)	5.80 2		6.50 - 9.00	NF T 90-008
pH à 20°C (Unités pH)	70.2			NF EN 27888
© Conductivité à 25°C (μS/cm)			0.0 0.5	NF EN ISO 7027
© Turbidité (NTU)	0.3		0.00 - 0.10	NF EN ISO 11732
© Ammonium (mg NH4/1)	<0.05		0.000 - 0.500	NF EN ISO 13395
<pre>® Nitrites (mg NO2/1)</pre>	<0.003		0.0 - 50.0	NF EN ISO 13395
© Nitrates (mg NO3/1)	4.50		0.0 - 50.0	NF EN ISO 10304-1
© Chlorures (mg/1)	4.4		0.0 - 250.0	NF EN ISO 10304-1
© Sulfates (mg/l)	2.6		0.0 - 250.0	NF T 90-003
♥ Dureté (degré F)	2.5			
© Titre Alcalimétrique Complet	(TAC) (°F) 2.1			Flux continu
© Carbone Organique Total (mg	C/1) 0.50			NF EN 1484

Remarques et conclusions

Physico-chimie : Eau de pH acide.

Clermont-Ferrand, le 17 Septembre 2004

Analyse validée par :

AT AME Josette

Le Responsable de la diffusion : ALAME Josette

ACCREDITATION

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole @ sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet

PLACE HENRI DUNANT B.P. 38 PHARMACIE MEDECINE ET DE FACULTÉS DE FAX: 04 73 28 84 55 CEDEX 01 - FRANCE -TEL: 04 73 28 84 50 CLERMONT-FERRAND

Page 1 / 2

RAPPORT D'ANALYSE (SUITE)

21 SEF

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1 Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 124670

Produit : Eau de consommation humaine au point de mise en distribution (Code de la Santé Publique -

article R 1321-1 et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

DANS CAPTAGE

Réception au laboratoire le 14 Septembre 2004 à 13h55

Prélèvement effectué le

14 Septembre 2004 à 10h30 par BASSO S., DDASS 63

ANALYSES BACTERIOLOGIQUES

		Résultat	Incert.	Limite de Qualité	Méthode
©	Coliformes Totaux (UFC/100 ml)	0		0	NF EN ISO 9308-1
	Escherichia coli (UFC/100 ml)	0		0	NF EN ISO 9308-1
	Entérocoques (UFC/100 ml)	0		0	NF EN ISO 7899
	Spore Bactérie Sulfito-réductrice (UFC/100	Non Déterminé		0	NF EN 26461-2
	ml)				
©	Dénombrement à 37° (UFC/ml.)	0			NF EN ISO 6222
0	Dénombrement à 22° (UFC/ml)	0			NF EN ISO 6222

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne les paramètres analysés.

Clermont-Ferrand, le 17 Septembre 2004

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

ACCREDITATION N° 1-1112 PORTÉE COMMUNIQUÉE SUR DEMANDE Remaranes concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet. FACULTÉS DE MÉDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL : 04 73 28 84 50 FAX : 04 73 28 84 55

ANALYSE OFFICIELLE B3C3C4abcd

Demandeur de l'analyse : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le

29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

DETERMINATIONS PHYSICO-CHIMIQUES (type C4a)

	Résultat	Limite de Qualité	Méthode
Azote KJELDAHL (mg N/1)	<1.00		EN 25663
Hydrocarbures totaux (mg/l)	<0.01	0.00 - 1.00	NF T 901
Agents de surface anioniques (mg SABM/1)	<0.10		EN 903
Indice Phénol (mg/l)	<0.025	0.000 - 0.100	NF T 901

		DETERMINATIONS	PHYSICO-CHIMIQUES	(type	C4b)	
			Résultat		Limite de Qualité	Méthode
	Cadmium (mg/l)		<0.0005		0.0000 - 0.0050	NF T 901
	Plomb (mg/l)		<0.005		0.000 - 0.050	NF T 901.
	`HPA (Hydrocarbures Polycyc	liques Aromatiques en μg,	/1)			5013
7	' Fluoranthène (μg/l)		<0.001			NFT90115
,	^r Benzo (3,4) Fluoranthène (μg/1)	<0.010			NFT90115
ł	Benzo (11,12) Fluoranthène	(μg/1)	<0.005			NFT90115
4	' Benzo (3,4) Pyrène (μg/l)		<0.001			NFT90115
1	Benzo (1,12) Pérylène (μg/	1)	<0.020			NFT90115
*	Indéno (1,2,3-cd) Pyrène (ɪg/1)	<0.020			NFT90115
k	Total (µg/l)		0.000		0.000 - 1.000	NFT90115

Clermont-Ferrand, le 12 Décembre 2000

Analyse validée par : ALAME Josette Le Responsable de la diffusion ALAME Josette

lau

FACULTES DE MEDECINE ET DE PHARMACIE - 28 VPLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le

29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c)

		DETERMINATIONS	FUIDICO-CUIMIÕOE	2 (ryhe	(40)	
			Résultat		Limite de Qualité	Méthode
	Arsenic (mg/l)		<0.005		0.000 - 0.100	NF T 9011
	Chrome total (mg/1)		<0.002		0.000 - 0.050	NF T 9011
	Mercure (mg/l)		<0.0002		0.0000 - 0.0010	ILB Metho
	Sélénium (mg/l)		<0.005		0.000 - 0.010	NF T 9011
	Cyanures totaux (mg/l)		<0.01		0.000 - 0.050	NF T 9010
	Solvants Halogénés Volatil	S				
	* Chloroforme (μg/l)		<0.01			ILB Métho
	* 1,1,1-Trichloroéthane (μg/	1)	<0.01			ILB Métho
	* Tétrachlorure de carbone (μg/1)	<0.01			ILB Métho
	* Trichloroéthylène (μg/l)		<0.01			ILB Métho
	* Bromodichlorométhane (μg/1)	<0.01			ILB Métho
	* cis-1,3-Dichloropropène (μ	g/l)	<0.01			ILB Métho
	* trans-1,3-Dichloropropèпе	(µg/1)	<0.01			ILB Métho
	* 1,1,2-Trichloroéthane (μg/	1)	<0.05			ILB Métho
	* Tétrachloroéthylène (μg/l)		<0.01			ILB Métho
	* Chlorodibromométhane (μg/l))	<0.01			ILB Métho
•	* Chlorobenzène (μg/l)		<1			ILB Métho
	* Bromoforme (μg/l)		<0.01	:		ILB Métho
	* 1,1,2,2-Tétrachloroéthane	(μg/1)	<0.01			ILB Métho
	* 1.3-Dichlorobenzène (μg/l)		<0.05			ILB Métho
	* 1.4-Dichlorobenzène (μg/l)		<0.05			ILB Métho
	* 1,2-Dichlorobenzène (μg/l)		<0.05			ILB Méthod
	Pesticides Organoazotés (ty	ype triazine)				
	* Atrazine (μg/l)		<0.01		-	
	* Simazine (μg/l)		<0.01			
	* Propazine (μg/l)		<0.01			

Clermont-Ferrand, le 12 Décembre 2000

* Déséthylatrazine (μg/l)

* Désisopropylatrazine (μg/l)

Analyse validée par : ALAME Josette

< 0.01

< 0.01

Le Responsable de la diffusior ALAME Josette

House

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le

29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c) (SUITE)

	Dis-11-1	(-25-010)	,	
	Résultat		Limite de Qualité	Méthode
Pesticides organochlorés				
* HCB (μg/1)	<0.01			
* alpha HCH (μg/l)	<0.02			
* Lindane (μg/l)	<0.02			
* Heptachlore (μg/l)	<0.02			
* Aldrin (μg/l)	<0.02			
* Heptachlore epoxide (μg/l)	<0.02			
* Endosulfan (μg/l)	<0.02			
* Dieldrin (μg/l)	<0.02			
* Endrin (μg/l)	<0.02			
* DDT pp' (µg/l)	<0.02			
* β HCH (μg/l)	<0.02			
* DDE pp' (μg/l)	<0.02			
* DDD op' (μg/l)	<0.02			
* DDD pp' (μg/l)	<0.02			
Pesticides organophosphorés				
* Dimethoate (μg/1)	<0.01			
* EPN (µg/1)	<0.01			
* Malathion (μg/l)	<0.01			
* Monocrotophos (μg/l)	<0.01			
* Parathion (μg/1)	<0.01			
* Sulfotepp (μg/l)	<0.01			
* TEPP (µg/1)	<0.01			

DETERMINATIONS PHYSICO-CHIMIQUES (type C4d)

	Résultat	Limite de Qualité	Méthode
Demande Biochimique en Oxygène - DBO/5 (mg 02/1)	<3.0		NF T 9010:
Demande Chimique en Oxygène (mg 02/1)	<30		NF T 90101
Bore (mg/l)	<0.050		ILB Méthoc
Baryum (mg/l)	<0.050	0.000 - 1.000	ILB Méthoc
Substances extractibles au chloroforme (mg/l)	<0.10		ILB Méthoc
Matières en suspension (mg/l)	<1.0		NF EN 872

Clermont-Ferrand, le 12 Décembre 2000

Analyse validée par : ALAME Josette Le Responsable de la diffusior

ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le

29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

DETERMINATIONS BACTERIOLOGIQUES

	Résultat	Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	0	0 - 50000	NF T 9041.
Coliformes Thermotolérants (UFC/100 ml)	0	0 - 20000	NF T 9041.
Streptocoques Fécaux (UFC/100 ml)	0	<10000	NF T 90410
Spore bactérie anaérobie sulfito réduct. (UFC/20ml)	0		NF T 9041:
Dénombrement à 37° (UFC/ml)	0		NF T 9040.
Dénombrement à 22° (UFC/ml)	0		NF T 90402
Pseudomonas aeruginosa (UFC/100 ml)	Non Déterminé		ILB Méthoc

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Limite de Qualité	Méthode
Odeur (qualitatif)	Sans odeur		
Saveur (qualitatif)	Sans saveur		
Température de l'eau (°C)	7.7	0.0 - 25.0	NF T 90100
Température de l'air (°C)	9.0		NF T 90100
Chlore résiduel total (mg/l)	<0.02		
Chlore résiduel libre (mg/l)	<0.02		
Bioxyde de chlore (mg C12/1)	Non Déterminé		
Chlorite (µg/l)	Non Déterminé		
Hydrogène sulfuré	Absence		ILB Méthod

	ANALYSE DES ANIONS Résultat	Limite de Qualité	Méthode
Chlorures (mg/l)	3.9	Limite de quarre	Std Method
Nitrites (mg NO2/1)	<0.050		NF T 90012
Nitrates (mg NO3/1)	5.90	0.0 - 50.0	NF T 90012
Sulfates (mg/l)	3.0	0.0 - 250.0	ISO 10304
Hydrogénocarbonates (HCO3) (mg/l)	24.4		Calculé
Carbonates (CO3) (mg/1)	0.00		Calculé
Phosphore total (mg P205/1)	0.07		NF T 90023
Fluorures (mg/l)	<0.05		150 10359

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Clermont-Ferrand, le 12 Décembre 2000

Analyse validée par :

Le Responsable de la diffusion ALAME Josette

ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le

29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

HMAL	10	Ľ.	DEO	CA	F. T	ONS

	Résultat	Limite de Qualité	Méthode
Ammonium (mg NH4/1)	<0.10	0.00 - 4.00	ISO 7150-
Calcium (mg/l)	4.80		Std Metho
Magnésium (mg/l)	1.30		Std Metho
Sodium (mg/1)	6.0		NF T 9001
Potassium (mg/l)	1.0		NF T 9001
Manganèse (mg/1)	0.006		NF T 9011
Fer (mg/l)	0.134		Std Metho
Zinc (mg/1)	<0.030	0.000 - 5.000	NF T 9011
Aluminium (mg/l)	0.008		NF T 9011
Cuivre (mg/1)	<0.002		NF T 9011

	ANALYSE PHYSICO-CHIN	MIQUE	
	Résultat	Limite de Qualité	Méthode
Conductivité à 25°C (μS/cm)	63.4		EN 27888
pH à 20°C (Unités pH)	6.20		NF T 9000
pH après marbre (à 20°C) (Unités pH)	6.70		
Titre Alcalimétrique Complet (TAC) (°F)	2.0		ILB Métho
T.A.C. après marbre (°F)	5.2		ILB Métho
Titre Hydrotimétrique Total (THT) (°F)	1.7		Calculé
Titre Hydrotimétrique Permanent (THP) (°F)	-		Calculé
Silice (mg SiO2/1)	21.90		ILB Method
Oxygène dissous (mg 02/1)	6.9		EN 25813
Couleur (quantitatif) (Hazen)	<5		ILB Métho
Résidu sec à 175-185°C (mg/l)	60.0		NF T 9002:
Oxydabilité à chaud en milieu acide (mg 02/1) <0.5	-	ISO 8467
Turbidité (NTU)	<0.2		EN 27027
Titre Alcalimétrique (TA) (°F)	<0.1		ILB Méthou
Anhydride carbonique libre (mg CO2/1)	40.5		NF T 9001.

Remarques et conclusions

Physico-chimie : Eau trés faiblement minéralisée.

Clermont-Ferrand, le 12 Décembre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusior

ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 6300| CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le

29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

ANNEXE - BILAN IONIQUE

		8
	mg/l	meq/1
Chlorures	3.9	0.11
Nitrites	<0.050	<0.01
Nitrates	5.90	0.10
Sulfates	3.0	0.06
Hydrogénocarbonates (HCO3)	24.4	0.40
Carbonates (CO3)	0.00	<0.01
Phosphore total	0.07	_
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.67
	mg/1	meq/1
Ammonium	<0.10	<0.01
Calcium	4.80	0.24
Magnésium	1.30	0.11
Sodium	6.0	0.26
Potassium	1.0	0.03
Manganèse	0.006	<0.01
Fer	0.134	<0.01
Zinc	<0.030	<0.01
Aluminium	0.008	<0.01
Cuivre	<0.002	<0.01
TOTAL CATIONS		0.64

Clermont-Ferrand, le 12 Décembre 2000

Analyse validée par :

Le Responsable de la diffusior ALAME Josette

ALAME Josette

RESULTATS D'ANALYSE DE TYPE B3C3C4bc

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le 29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

DETERMINATIONS BACTERIOLOGIQUES

	Résultat	Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	0	0 - 50000	NF T 904.
Coliformes Thermotolérants (UFC/100 ml)	0	0 - 20000	NF T 904.
Streptocoques Fécaux (UFC/100 ml)	0	<10000	NF T 904.
Pseudomonas aeruginosa (UFC/100 ml)	Non Déterminé		ILB Métho
Dénombrement à 37° (UFC/ml)	0		NF T 9040
Dénombrement à 22° (UFC/ml)	0		NF T 9041
Spore bactérie anaérobie sulfito réduct. (U	FC/20ml) 0		NF T 904;

DETERMINATIONS REALISEES PAR LE PRELEVEUR SUR LE TERRAIN

DELDIGITIMITIONS	TIME COUNTY TO	LUCTEAROK'	DOK TE TEKKYIN	
	Résultat		Limite de Qualité	Méthode
Odeur (qualitatif)	Sans odeur			
Saveur (qualitatif)	Sans saveur	*		
Température de l'eau (°C)	7.7		0.0 - 25.0	NF T 9010
Température de l'air (°C)	9.0			NF T 9010
Chlore résiduel total (mg/l)	<0.02			
Chlore résiduel libre (mg/l)	<0.02			
Bioxyde de chlore (mg C12/1)	Non Déterminé			
Chlorite (µg/l)	Non Déterminé			
Hydrogène sulfuré	Absence			ILB Méthc

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Clermont-Ferrand, le 13 Décembre 2000

Analyse validée par :

ALAME Josette

ALAME Josette

Le Responsable de la diffusio

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : STAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le 29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

DETERMINATIONS PHYSICO-CHIMIQUES (type C4b)

	Résultat	Limite de Qualité	Méthode
Cadmium (mg/1)	<0.0005	0.0000 - 0.0050	NF T 901.
Plomb _* (mg/l)	<0.005	0.000 - 0.050	NF T 901.
HPA (Hydrocarbures Polycycliques Aromatique	es en μg/l)		
* Fluoranthène (μg/l)	<0.001		NFT90115
* Benzo (3,4) Fluoranthène (μg/l)	<0.010		NFT90115
* Benzo (11,12) Fluoranthène (μg/l)	<0.005		NFT90115
* Benzo (3,4) Pyrène (μg/l)	<0.001		NFT90115
* Benzo (1,12) Pérylène (μg/l)	<0.020		NFT90115
* Indéno (1,2,3-cd) Pyrène (μg/l)	<0.020		NFT90115
* Total (μg/l)	0.000	0.000 - 1.000	NFT90115

Clermont-Ferrand, le 13 Décembre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusion ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28 PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL: (33) 04 73 28 84 50 - FAX: (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le 29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c)

	PRIBIGITAVITOND ENTRECO-CUITATÃOEP	(rybe cac)	
	Résultat	Limite de Qualité	Méthode
Arsenic (mg/l)	<0.005	0.000 - 0.100	NF T 901
Chrome total (mg/l)	<0.002	0.000 - 0.050	NF T 901
Mercure (mg/l)	<0.0002	0.0000 - 0.0010	ILB Meth
Sélénium (mg/l)	<0.005	0.000 - 0.010	NF T 901.
Cyanures totaux (mg/l)	<0.01	0.000 - 0.050	NF T 901
Solvants Halogénés Volatils	s		
* Chloroforme (μg/1)	<0.01		ILB Métho
* 1,1,1-Trichloroéthane (μg/)	(0.01		ILB Métho
* Tétrachlorure de carbone (µ	μg/1) < 0.0 1		ILB Métho
⊁ Trichloroéthylène (μg/l)	<0.01		ILB Méthc
* Bromodichlorométhane (μg/l)	(0.01		ILB Méthc
* cis-1,3-Dichloropropène (μς	g/l) <0.01		ILB Méthc
* trans-1,3-Dichloropropène ((μg/l) <0.01		ILB Méthc
* 1,1,2-Trichloroéthane (μg/l	1) <0.05		ILB Méthc
* Tétrachloroéthylène (μg/l)	<0.01		ILB Méthc
* Chlorodibromométhane (µg/l)	(0.01		ILB Méthc
* Chlorobenzène (μg/l)	<1		[LB Méth c
* Bromoforme (μg/l)	<0.01		ILB Méthc
* 1,1,2,2-Tétrachloroéthane ((μg/l) <0.01		ILB Méthc
* 1,3-Dichlorobenzène (μg/l)	<0.05		ILB Méthc
* 1,4-Dichlorobenzène (μg/l)	< 0.05		ILB Méthc
* 1,2-Dichlorobenzène (μg/l)	<0.05		ILB Méthc
Pesticides Organoazotés (ty	ype triazine)		
* Atrazine (μg/l)	< 0.01	-	
* Simazine (μg/l)	<0.01		
* Propazine (μg/l)	<0.01		
* Déséthylatrazine (μg/l)	<0.01		

Clermont-Ferrand, le 13 Décembre 2000

* Désisopropylatrazine (μg/l)

Analyse validée par :

ALAME Josette

<0.01

Le Responsable de la diffusio

ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL: (33) 04 73 28 84 50 - FAX: (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le 29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c) (SUITE)

	Résultat	Limite de Qualité	Méthode
Pesticides organochlorés			
* HCB (μg/1)	<0.01		
* alpha HCH (μg/l)	<0.02		
* Lindane (μg/l)	<0.02		
* Heptachlore (μg/l)	<0.02		
* Aldrin (μg/l)	<0.02		
* Heptachlore epoxide (μg/l)	<0.02		
* Endosulfan (μg/l)	<0.02		
* Dieldrin (μg/l)	<0.02		
* Endrin (μg/l)	<0.02		
* DDT pp' (μg/l)	<0.02		
* B HCH (µg/1)	<0.02		
* DDE pp' (μg/l)	<0.02		
* DDĐ op' (μg/l)	<0.02		
* DDD pp' (μg/l)	<0.02		
Pesticides organophosphorés			
* Dimethoate (μg/1)	<0.01		
* EPN (μg/1)	<0.01		
* Malathion (μg/l)	<0.01		
* Monocrotophos (μg/l)	<0.01		
* Parathion (μg/1)	<0.01		
* Sulfotepp (μg/l)	<0.01		
* TEPP (μg/l)	<0.01		

Clermont-Ferrand, le 13 Décembre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusio ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le 29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

	ANALYSE DES ANIONS	*	
	Résultat	Limite de Qualité	Méthode
Chlorures (mg/l)	3.9		Std Meth
Nitrites (mg NO2/1)	<0.050		NF T 900
Nitrates (mg NO3/1)	5.90	0.0 - 50.0	NF T 900.
Sulfates (mg/l)	3.0	0.0 - 250.0	ISO 1030-
Hydrogénocarbonates (HCO3) (mg/1)	24.4		Calculé
Carbonates (CO3) (mg/1)	0.00		Calculé
Phosphore total (mg P205/1)	0.07		NF T 9002
Fluorures (mg/l)	<0.05		ISO 10355

••	ANALYSE DES CATIONS		
	Résultat	Limite de Qualité	Méthode
Ammonium (mg NH4/1)	<0.10	0.00 - 4.00	ISO 7150-
Calcium (mg/l)	4.80		Std Metho
Magnésium (mg/l)	1.30		Std Metho
Sodium (mg/l)	6.0		NF T 9003
Potassium (mg/l)	1.0		NF T 900
Manganèse (mg/l)	0.006		NF T 9011
Fer (mg/l)	0.134		Std Metho
Zinc (mg/l)	<0.030	0.000 - 5.000	NF T 9011
Aluminium (mg/l)	0.008		NF T 9011
Cuivre (mg/l)	<0.002		NF T 9011

Clermont-Ferrand, le 13 Décembre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusio ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL: (33) 04 73 28 84 50 - FAX: (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié). Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le

29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

ANALYSE PHYSICO-CHIMIQUE

	THE PROPERTY OF THE PROPERTY O	Li	
	Résultat	Limite de Qualité	Méthode
Conductivité à 25°C (µS/cm)	63.4		EN 27888
pH à 20°C (Unités pH)	6.20		NF T 900C
pH après marbre (à 20°C) (Unités pH)	6.70		
Titre Alcalimétrique Complet (TAC) (°F)	2.0		ILB Méthc
T.A.C. après marbre (°F)	5.2		ILB Méthc
Titre Hydrotimétrique Total (THT) (°F)	1.7		Calculé
Titre Hydrotimétrique Permanent (THP) (°F)	-		Calculé
Silice (mg SiO2/1)	21.90		ILB Metho
Oxygène dissous (mg 02/1)	6.9		EN 25813
Couleur (quantitatif) (Hazen)	<5		ILB Métho
Résidu sec à 175-185°C (mg/l)	60.0		NF T 9002
Oxydabilité à chaud en milieu acide (mg 02/1)	<0.5		ISO 8467
Turbidité (NTU)	<0.2		EN 27027
Titre Alcalimétrique (TA) (°F)	<0.1		ILB Métho
Anhydride carbonique libre (mg CO2/1)	40.5		NF T 9001

Remarques et conclusions

Physico-chimie : Eau trés faiblement minéralisée.

Clermont-Ferrand, le 13 Décembre 2000

Analyse validée par : ALAME Josette Le Responsable de la diffusion ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 73086

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage DANSADOUX

Réception au laboratoire le 29 Novembre 2000 à 15h00

Prélèvement effectué le

29 Novembre 2000 à 10h00 par PEYRAUD S., INSTITUT LOUISE BLANQUET

ANNEXE - BILAN IONIQUE

	mg/1	meq/1
Chlorures	3.9	0.11
Nitrites	<0.050	<0.01
Nitrates	5.90	0.10
Sulfates	3.0	0.06
Hydrogénocarbonates (HCO3)	24.4	0.40
Carbonates (CO3)	0.00	<0.01
Phosphore total	0.07	-
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.67
	mg/l	meq/l
Ammonium	<0.10	<0.01
Calcium	4.80	0.24
Magnésium	1.30	0.11
Sodium	6.0	0.26
Potassium	1.0	0.03
Manganèse	0.006	<0.01
Fer	0.134	<0.01
Zinc	<0.030	<0.01
Aluminium	0.008	<0.01
Cuivre	<0.002	<0.01
TOTAL CATIONS		0.64

Clermont-Ferrand, le 13 Décembre 2000

Analyse validée par : ALAME Josette Le Responsable de la diffusio ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACTE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

LA GARDE

Bulletin d'analyse

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME

Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND

Réf: 234934

SIAEP HAUT-LIVRADOIS

Mairie d'ARLANC **63220 ARLANC**

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Dans bâche - Par immersion

Réception au laboratoire :

06/10/2008 14:47:00

Prélèvement effectué le :

06/10/2008 10:55:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

1	Analyse	Résultat		Limite de Qualité	Réalisé le	Méthode
			Analyses bactériologiques			
0	Coliformes Totaux	0 UFC/100 ml			06/10/2008	NF EN ISO 9308-1
O	Escherichia coli	0 UFC/100 ml		x <= 20000	06/10/2008	NF EN ISO 9308-1
©	Entérocoques	0 UFC/100 ml		x <= 10000	06/10/2008	NF EN ISO 7899-2
©	Spore Bactérie Sulfito-réductrice	0 UFC/100 ml			06/10/2008	NF EN 26461-2
©	Dénombrement à 22°	5 UFC/ml			06/10/2008	NF EN ISO 6222
0	Dénombrement à 37°	0 UFC/mi			06/10/2008	NF EN ISO 6222
			Analyses des traces organique	ies		
0	Indice Hydrocarbures	<0.1 mg/l		x <= 1,00	07/10/2008	NF EN ISO 9377-2
ŀ	lydrocarbures Polycycliques A	romatiques			06/10/2008	NF EN ISO 17993
	Fluoranthène	<0.001 µg/l				
	Benzo(b)fluoranthène	<0.010 µg/l				
	Benzo(k)fluoranthène	<0.005 µg/l				
	Benzo(a)pyrène	<0.001 µg/l				
	Benzo(ghi)pérylène	<0.020 µg/l				
	Indeno(1,2,3-cd)pyrène	<0.020 µg/l				
	Total des 6 subsances	<0.020 µg/l		x <= 1,000		
©	Benzène	<0.5 µg/l			14/10/2008	NF ISO 11423-1
© S	Solvants Halogénés Volatils				14/10/2008	Méthode ILB
-	Trichloroéthylène	<0.50 µg/l				
-	Tétrachloroéthylène	<0.50 µg/l				
-	1,2-Dichloroéthane	<0.50 µg/l				
-	Total tetra+trichloroéthylène	<0.50 µg/l				
Ċ	Chlorure de vinyle	<0.30 µg/l			14/10/2008	Méthode ILB

Clermont-Ferrand, le 30/10/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion :

ALAMÉ Josette

Page 1 de 2

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE **CLERMONT-FERRAND**

ET DE. PHARMACIE 28.

PLACE HENRI

DUNANT B.P. 38 FAX: 04 73 28 84 55

CEDEX 01 - FRANCE -TEL: 04 73 28 84 50

Bulletin d'analyse

(Suite.)

Réf: 234934

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Dans bâche - Par immersion

Réception au laboratoire :

06/10/2008 14:47:00

Prélèvement effectué le :

06/10/2008 10:55:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

/	Analyse	Résultat	Limite de Qualité	Réalisé le	Méthode
		Analyses physico-chimique	S		
C	pH à 20°C	5.95 Unités pH		06/10/2008	NF T 90-008
C	Conductivité à 25°C	48.1 μS/cm		06/10/2008	NF EN 27888
(C)	Résistivité à 25°C	20790 ohm.cm		08/10/2008	NF EN 27888
C	Potassium	0.9 mg/l		15/10/2008	NF T 90-019
C	Indice Phénol	<0.025 mg/l	x <= 0,100	13/10/2008	T 90-109
C	Cyanures totaux	<10,0 µg/l		14/10/2008	NF EN ISO 14403
C	Agents de surface anioniques	<0,10 mg SABM/l	x <= 0,10	10/10/2008	NF EN 903
		Analyses de radioactivité (analyses so	us traitées)		
	Activité Beta Résiduelle	0.06 Bq/L		17/10/2008	calcul
	Activité Alpha Globale	<0,02 Bq/L		17/10/2008	NF M 60-801
	Activité Beta Globale	0.08 Bq/L		17/10/2008	NF M 60-800
	Activité Potassium 40	0.02 Bq/L		13/10/2008	calcul
	Activité volumique Tritium	<1.00 Bq/L		21/10/2008	NF M 60-802-1
	Dose Totale Indicative	<8,10 mSv/an		16/10/2008	Calcul
		Mesures sur le terrain			
	Aspect (qualitatif)	Normal		06/10/2008	Méthode ILB
	Hydrogène sulfuré	Absence		06/10/2008	Méthode ILB
C	pН	6.30 Unités pH		06/10/2008	NF T 90-008
	Température de l'air	9.0 °C		06/10/2008	Méthode ILB
	Température de l'eau	7.5 °C	x <= 25,0	06/10/2008	Méthode ILB
		Analyses de traces inorganiqu	ies		
C	Aluminium	0.011 mg/l		07/10/2008	NF EN ISO 11885
(C)	Baryum	<0.050 mg/l	x <= 1	06/10/2008	NF EN ISO 11885
C	Chrome total	<0.010 mg/l	x <= 0,050	06/10/2008	NF EN ISO 11885
C	Cuivre	0.015 mg/l		06/10/2008	NF EN ISO 11885
C	Fer	<0.010 mg/l		06/10/2008	NF EN ISO 11885
C	Mercure	<0.0002 mg/l	x <= 0,0010	08/10/2008	NF EN 1483
C	Plomb	<0.005 mg/l		17/10/2008	NF EN ISO 17294-2
C	Zinc	<0.010 mg/l	x <= 5,000	06/10/2008	NF EN ISO 11885

Clermont-Ferrand, le 30/10/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 2 de 2

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE ESSAIS SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

MEDECINE PHARMACIE

PLACE HENRI DUNANT

FAX: 04 73 28 84 55

CLERMONT-FERRAND

CEDEX 01 - FRANCE -

TEL: 04 73 28 84 50

- 4 - - 1 2005

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Température de l'eau (°C)

Température de l'air (°C)

Hydrogène sulfuré

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139090

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Dans captage

Réception au laboratoire le 11 Août 2005 à 14h59

11 Août 2005 à 10h45 par BROTTE C., DDASS 63 Prélèvement effectué le

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Méthode Méthode ILB Résultat Méthode ILB Non Déterminé Méthode ILB Non Déterminé NF T 90-008 Absence Non Déterminé

Hydrogene Surrar	NOIT Decom-		
pH à 20°C (Unités pH) Conductivité à 25°C (μs/cm) pH à 20°C (Unités pH) pH après marbre (à 20°C) (Unités pH) Titre Alcalimétrique Complet (TAC) (°F) Titre Hydrotimétrique Total (THT) (°F) Turbidité (NTU) Titre Alcalimétrique (TA) (°F) Silice (mg SiO2/1)	ANALYSE PHYSICO-CHIMIQU Résultat 44.1 6.10 7.00 1.6 4.1 1.1 <0.2 <0.1 17.70 0.35	E Limite de Qualité	Méthode NF EN 27888 NF T 90-008 NF T 90-008 Flux continu Flux continu Calculé NF EN ISO 7027 Flux continu NF EN ISO 11885 NF EN 1484 NF EN 150 8467 NF EN 25814 NF T 90-011
o ovydabilité à chaud en mille	8.8		NF T 90-011
oxygène dissous (mg O2/1) Anhydride carbonique libre (mg CO2/1)	24.3		

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par :

Le Responsable de la diffusion :

ALAME Josette

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets sournis à l'essai. Le reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - CALULTÉS DE MÉDECINE ET DE PHARMACIE — CALULTÉS DE MÉDECINE E

63001 CLERMONT-FERRAND

- 3 600 2005

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139090

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Dans captage

Réception au laboratoire le 11 Août 2005 à 14h59

prélèvement effectué le

11 Août 2005 à 10h45 par BROTTE C., DDASS 63

	<u> </u>		
ANALYSE DES	ANIONS	Limite de Qualité <200.0	Méthode NF EN ISO 10304-1 NF EN ISO 13395 NF EN ISO 10304-1
<0.003 1.00 3.1 19.5 0.00 <0.10 <0.05	*	<50.00 <250.0	NF EN ISO 10304-1 Calculé Calculé NF EN ISO 10304-1 NF EN ISO 10304-1
ANALYSE DES Résultat <0.05 3.00 0.80 3.8 0.9	CATIONS Incert.	Limite de Qualité	Méthode NF EN ISO 11732 NF EN ISO 7980 NF EN ISO 7980 NF T 90-019 NF T 90-019
-	Résultat 1.1 <0.003 1.00 3.1 19.5 0.00 <0.10 <0.05 ANALYSE DES Résultat <0.05 3.00 0.80 3.8	Résultat 1.1 <0.003 1.00 3.1 19.5 0.00 <0.10 <0.05 ANALYSE DES CATIONS Résultat <0.05 3.00 0.80 3.8	Résultat <200.0 1.1 <0.003

Analyse validée par :

Le Responsable de la diffusion :

ALAME Josette

Remarques concernant comments du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai La reproduction de ce rapport d'essai n'est autorisée que sous sa fonne intégrale. L'accréditation de la Section Laberatoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE DIADMACTE Le nombre de pages est munique au pas de enaque neimiet.
FACULTÉS DE MÉDECINE ET DE PHARMACIE – 28, PLACE HENRI
63001 CLERMONT-FERRAND CEDEX 01 – FRANCE – TEL.: 04 73 28 84 50

FACULTÉS DE

- 5 - - - 1005

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139090

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Dans captage

Réception au laboratoire le 11 Août 2005 à 14h59

11 Août 2005 à 10h45 par BROTTE C., DDASS 63 Prélèvement effectué le

	ANALYSES BACTERIOLOGIQUES Résultat Incert. Non Déterminé	Limite de Qualité	Méthode NF EN ISO 9308-1 NF EN ISO 9308-1 NF EN ISO 7899-2
Coliformes Totaux (UFC/100 ml)	0	0 - 10000	NF EN 26461-2
Escherichia coli (UFC/100 ml)	0		NF EN 26401 2
Entérocoques (UFC/100 ml) Spore Bactérie Sulfito-réductrice (UFC/10			NF EN ISO 6222 NF EN ISO 6222
ml)	Non Déterminé		NF EN 150
Dénombrement à 37° (UFC/ml)	Non Déterminé		
Dénombrement à 22° (UFC/ml)	CTTTTTE /SOIIS	traitée)	wéthode

ANALYSE DE RADIOACTIVITE (sous traitée)

Méthode Limite de Qualité NFM 60801 Résultat NFM 60800 Non Déterminé Activité Alpha Globale (Bq/L) NFM 60802-1 Non Déterminé Activité Beta Globale (Bq/L) Non Déterminé Activité volumique Tritium (Bq/L) Non Déterminé

	Activité volumique l'Illandia Dose Totale Indicative (mSv/an)	Non Déterminé				
	Dose Totale Indicate	ANALYSES	DES	METAUX	Limite de Qualité	Méthode NF EN ISO 15586
	8	<0.005			<100.000	NF EN ISO 15586 NF EN ISO 11885
	Antimoine (mg/l) Arsenic (mg/l)	<0.005 <0.050			<0.0050	NF EN ISO 5961 NF EN ISO 11885
	Bore (mg/l) Cadmium (mg/l)	<0.0005 <0.005				NF EN ISO 11885 NF EN ISO 15586
6	Manganèse (mg/l) Nickel (mg/l)	<0.005			<0.010	NF EN 150 11885
E	sélénium (mg/l)	<0.005				
	Fer dissous (mg/l)			-1ai 07.5		

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne les paramètres analysés.

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par :

Le Responsable de la diffusion :

ALAME Josette

ALAME Josette Remarques concernant ce rapport:

Seuls les parametres marques du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets sourtis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet. Remarques concernant ce rapport:
Seuls les paramètres

Le nombre de pages est indiqué au bas de chaque feuillet. DE PHARMACIE -CEDEX 01 - FRANCE - TEL: 04 73 28 84 50 MÉDECINE ET DE

CLERMONT-FERRAND

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139090

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Dans captage

Réception au laboratoire le 11 Août 2005 à 14h59

Prélèvement effectué le 11 Août 2005 à 10h45 par BROTTE C., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat Incert. Limite de Qualité Méthode Température de l'eau (°C) Non Déterminé <25.0 Méthode ILB Température de l'air (°C) Non Déterminé Méthode ILB Hydrogène sulfuré Absence Méthode ILB pH à 20°C (Unités pH) Non Déterminé NF T 90-008

ANALYSE PHYSICO-CHIMIQUE

		Résultat	Incert.	Limite de Qualité	Méthode
O	Conductivité à 25°C (µS/cm)	44.1			NF EN 27888
0	pH à 20°C (Unités pH)	6.10			NF T 90-008
0	pH après marbre (à 20°C) (Unités pH)	7.00			NF T 90-008
0	Titre Alcalimétrique Complet (TAC) (°F)	1.6			Flux continu
0	T.A.C. après marbre (°F)	4.1			Flux continu
	Titre Hydrotimétrique Total (THT) (°F)	1.1			Calculé
0	Turbidité (NTU)	<0.2			NF EN ISO 7027
٥	Titre Alcalimétrique (TA) (°F)	<0.1			Flux continu
0	Silice (mg SiO2/1)	17.70			NF EN ISO 11885
0	Carbone Organique Total (mg C/l)	0.35			NF EN 1484
	Oxydabilité à chaud en milieu acide (mg 02/1)	<0.5		<10.0	NF EN ISO 8467
	Oxygène dissous (mg O2/1)	8.8		(10,0	
	Anhydride carbonique libre (mg CO2/1)	24.3			NF EN 25814
	and array carsonique rible (mg CO2/1)	24.3			NF T 90-011

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par :

ALAME Josette

Le Responsable de la diffusion : ALAME Josette

Remarques concernant ce rapport :

Remaiques concernant ce rapport.

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE

DE PHARMACIE 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50

ET

28, PLACE HENRI DUNANT

B.P. 38 -FAX: 04 73 28 84 55

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139090

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Dans captage

Réception au laboratoire le 11 Août 2005 à 14h59

Prélèvement effectué le 11 Août 2005 à 10h45 par BROTTE C., DDASS 63

ANALYSE DES ANIONS

		Résultat	Incert.	Limite de Qualité	Méthode
0	Chlorures (mg/l)	1.1		<200.0	NF EN ISO 10304-1
0	Nitrites (mg NO2/1)	<0.003			NF EN ISO 13395
0	Nitrates (mg NO3/1)	1.00		<50.00	NF EN ISO 10304-1
0	Sulfates (mg/l)	3.1		<250.0	NF EN ISO 10304-1
	Hydrogénocarbonates (HCO3) (mg/l)	19.5			Calculé
	Carbonates (CO3) (mg/l)	0.00			Calculé
•	Phosphore total (mg P2O5/1)	<0.10			NF EN ISO 10304-1
0	Fluorures (mg/l)	<0.05			NF EN ISO 10304-1

ANALYSE DES CATIONS

	Résultat	Incert.	Limite de Qualité	Méthode
Ammonium (mg NH4/1)	<0.05		<4.00	NF EN ISO 11732
Calcium (mg/l)	3.00			NF EN ISO 7980
Magnésium (mg/l)	0.90			NF EN ISO 7980
Sodium (mg/l)	3.8			NF T 90-019
Potassium (mg/l)	0.9			NF T 90-019
	Ammonium (mg NH4/1) Calcium (mg/1) Magnésium (mg/1) Sodium (mg/1) Potassium (mg/1)	Ammonium (mg NH4/1) <0.05 Calcium (mg/1) 3.00 Magnésium (mg/1) 0.90 Sodium (mg/1) 3.8	Ammonium (mg NH4/1) <0.05 Calcium (mg/1) 3.00 Magnésium (mg/1) 0.80 Sodium (mg/1) 3.8	Ammonium (mg NH4/1) <0.05 <4.00 Calcium (mg/1) 3.00 Magnésium (mg/1) 0.80 Sodium (mg/1) 3.8

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par :

ALAME Josette

Le Responsable de la diffusion : ALAME Josette

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autonsée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

FACULTÉS DE MÉDECINE ET

DE PHARMACIE 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50

28, PLACE HENRI DUNANT - B.P. 38 -

FAX: 04 73 28 84 55

2013

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139090

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Dans captage

Réception au laboratoire le 11 Août 2005 à 14h59

Prélèvement effectué le 11 Août 2005 à 10h45 par EROTTE C., DDASS 63

	ANALYSE CHROMAT	TOGRAPHIQUE		
	Résultat	Incert.	Limite de Qualité	Méthode
	Non Déterminé			NF ISO 11423-1
Benzène (μg/l)	<0.10		<1.00	NF EN ISO 9377-2
Indice Hydrocarbures (mg/l)				
Phényl-urées	<0.1			NF EN ISO 11369
Diuron (ug/l)	<0.1			NF EN ISO 11369
Isoproturon (ug/1)	<0.1			NF EN ISO 11369
Linuron (ug/l)				
Pesticides organophosphorés	<0.01		<2.00	NF EN ISO 10695
· Dimethoate (µg/l)	<0.01		<2.00	NF EN ISO 10695
• EPN (μg/l)	<0.01			NF EN ISO 10695
Malathion (μg/l)	<0.01			NF EN ISO 10695
* Monocrotophos (μg/1)	<0.01			NF EN ISO 10695
 Parathion (μg/1) 	<0.01			NF EN ISO 10695
 sulfotepp (μg/l) 				NF EN ISO 10695
* TEPP (µg/1)	<0.01			
Pesticides Organoazotés			<2.00	NF EN ISO 10695
* Atrazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
* Simazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
* Propazine (µg/l)	<0.01			NF EN ISO 10695
 Déséthylatrazine (μg/l) 	<0.01		<2.00	NF EN ISO 10695
 Désisopropylatrazine (μg/l) 	<0.01		<2.00	NF EN ISO 10695
* Cyanazine (µg/l)	<0.01		72.00	NF EN ISO 10695
* Terbuthylazine (µg/l)	<0.01			NF EN ISO 10695
* Terbuméton (μg/l)	<0.01		<5.00	Calculé
Pesticides totaux (µg/1)	<0.01		C3.00	Control of the second
Solvants Halogénés Volatils				Methode interne
* Trichloroéthylène (μg/l)	<0.01			Methode interne
* Tétrachloroéthylène (μg/1)	<0.01			Methode interne
* 1,2-Dichloroéthane (µg/l)	<0.05		×	Methode interne
 Total tetra+trichloroéthylène (μg/1) 	<0.02			Helhoue Intelne
10000				

Analyse validée par :

Le Responsable de la diffusion :

Remarques concernant ce rapport:

ALAME Josette

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autonsée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE BUADALONE.

CLERMONT-FERRAND CEDEX 01 - FRANCE -

FAX: 04 73 28 84 55

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139090

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Dans captage

Réception au laboratoire le 11 Août 2005 à 14h59

Prélèvement effectué le

11 Août 2005 à 10h45 par BROTTE C., DDASS 63

ANNEXE - BILAN IONIQUE

	mg/l	meq/l
Chlorures	1.1	0.03
Nitrites	<0.003	<0.01
Nitrates	1.00	0.02
Sulfates	3.1	0.06
Hydrogénocarbonates (HCO3)	19.5	0.32
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.43
	mg/l	meq/l
Ammonium	<0.05	<0.01
Calcium	3.00	0.15
Magnésium	0.80	0.07
Sodium	3.8	0.17
Potassium	0.9	0.02
TOTAL CATIONS		0.41

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par :

ALAME Josette

Le Responsable de la diffusion : ALAME Josette

Remarques concernant ce rapport:
Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne conceme que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÈS DE MÉDECINE ET DE PHARMACIE — 28, PLACE HENRI DUNANT — B.P. 38 - 63001 CLERMONT-FERRAND CEDEX 01 — FRANCE — TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139090

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Dans captage

Réception au laboratoire le 11 Août 2005 à 14h59

Prélèvement effectué le 11 Août 2005 à 10h45 par BROTTE C., DDASS 63

ANALYSES BACTERIOLOGIQUES

		Résultat	Incert.	Limite de Qualité	Méthode
0	Coliformes Totaux (UFC/100 ml)	Non Déterminé			NF EN ISO 9308-1
0	Escherichia coli (UFC/100 ml)	0			NF EN ISO 9308-1
0	Entérocoques (UFC/100 ml)	0		0 1000	_
0	Spore Bactérie Sulfito-réductrice (UFC/100	Non Déterminé		0 - 10000	NF EN ISO 7899-2
	ml)	MOU Defermina			NF EN 26461-2
_	•				
6	Dénombrement à 37° (UFC/ml)	Non Déterminé			NF EN ISO 6222
0	Dénombrement à 22° (UFC/ml)	Non Déterminé			NF EN ISO 6222

ANALYSE DE RADIOACTIVITE (sous traitée)

	Résultat	Incert.	Limite de Qualité	Méthode
Activité Alpha Globale (Bq/L)	Non Déterminé			NFM 60801
Activité Beta Globale (Bq/L)	Non Déterminé			NFM 60800
Activité volumique Tritium (Bq/L)	Non Déterminé			NFM 60802-1
Dose Totale Indicative (mSv/an)	Non Déterminé			

ANALYSES DES METAUX

		Résultat	Incert.	Limite de Qualité	Méthode
•	Antimoine (mg/l)	<0.005			NF EN ISO 15586
0	Arsenic (mg/l)	<0.005		<100.000	NF EN ISO 15586
0	Bore (mg/l)	<0.050			NF EN ISO 11885
0	Cadmium (mg/l)	<0.0005		<0.0050	NF EN ISO 5961
0	Manganèse (mg/l)	<0.005		70.0030	
0	Nickel (mg/l)	<0.005			NF EN ISO 11885
0	Sélénium (mg/l)	<0.005			NF EN ISO 11885
	Fer dissous (mg/l)			<0.010	NF EN ISO 15586
	arrown (mg/ r)	<0.005			NF EN ISO 11685

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne les paramètres analysés.

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par :

Le Responsable de la diffusion :

ALAME Josette

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation, Ce rapport d'essai ne concerne que les objets sournis à l'essai La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE PHARMACIE – 28, PLACE HENRI DUNANT – B.P. 38 -

ALAME Josette

63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50

FAX: 04 73 28 84 55

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139090

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Dans captage

Réception au laboratoire le 11 Août 2005 à 14h59

Prélèvement effectué le 11 Août 2005 à 10h45 par BROTTE C., DDASS 63

ANALYSE CHROMATOGRAPHIQUE

		Résultat 💮	Incert.	Limite de Oualité	Méthode
	© Benzène (μg/l)	Non Déterminé			NF ISO 11423-1
	Indice Hydrocarbures (mg/l)	<0.10		<1.00	NF EN ISO 9377-2
	Phényl-urées				111 III III III I
	Diuron (ug/1)	<0.1			NF EN ISO 11369
	Isoproturon (ug/l)	<0.1			NF EN ISO 11369
1	Linuron (ug/l)	<0.1			NF EN ISO 11369
•	Pesticides organophosphorés				111 1111 1110 11100
	Dimethoate (μg/l)	<0.01		<2.00	NF EN ISO 10695
1	PPN (μg/l)	<0.01		<2.00	NF EN ISO 10695
4	Malathion (μg/l)	<0.01			NF EN ISO 10695
1	Monocrotophos (μg/l)	<0.01			NF EN ISO 10695
- 4	Parathion (μg/1)	<0.01			NF EN ISO 10695
•	Sulfotepp (µg/1)	<0.01			NF EN ISO 10695
	TEPP (μg/l)	<0.01			NF EN ISO 10695
0	Pesticides Organoazotés				110 110 1100 110000
*	Atrazine (µg/1)	<0.01		<2.00	NF EN ISO 10695
*	Simazine (μ g/1)	<0.01		<2.00	NF EN ISO 10695
ŵ	Propazine (µg/1)	<0.01		<2.00	NF EN ISO 10695
w	Déséthylatrazine (μ g/1)	<0.01			NF EN ISO 10695
•	Désisopropylatrazine (μg/l)	<0.01		<2.00	NF EN ISO 10695
W.	Cyanazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
tir	Terbuthylazine (µg/1)	<0.01			NF EN ISO 10695
*	Terbuméton (µg/1)	<0.01			NF EN ISO 10695
	Pesticides totaux (µg/l)	<0.01		<5.00	Calculé
0	Solvants Halogénés Volatils				
*	Trichloroéthylène (μ g/1)	<0.01			Methode interne
ŵ	Tétrachloroéthylène (μ g/1)	<0.01			Methode interne
ŵ	1,2-Dichloroéthane (µg/l)	<0.05			Methode interne
輸	Total tetra+trichloroéthylène (μ g/1)	<0.02			Methode interne

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai, La production de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 -

ET 28, PLACE HENRI DUNANT - B.P. 38 -DE PHARMACIE 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139090

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Dans captage

Réception au laboratoire le 11 Août 2005 à 14h59

Prélèvement effectué le 11 Août 2005 à 10h45 par BROTTE C., DDASS 63

ANNEXE - BILAN IONIQUE

	mg/l	meq/l
Chlorures	1.1	0.03
Nitrites	<0.003	<0.01
Nitrates	1.00	0.02
Sulfates	3.1	0.06
Hydrogénocarbonates (HCO3)	19.5	0.32
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.43
	mg/l	meq/l
Ammonium	<0.05	<0.01
Calcium	3.00	0.15
Magnésium	0.80	0.07
Sodium	3.8	0.17
Potassium	0.9	0.02
TOTAL CATIONS		0.41

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par :

ALAME Josette

Le Responsable de la diffusion : ALAME Josette

Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai de reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE PHARMACIE

CLERMONT-FERRAND CEDEX 01 - FRANCE TEL: 04 73 28 84 50

28, PLACE HENRI DUNANT - B.P. 38 -

FAX: 04 73 28 84 55

2 1 52 2004

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 124672

Produit : Eau de consommation humaine au point de mise en distribution (Code de la Santé Publique -

article R 1321-1 et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Réception au laboratoire le 14 Septembre 2004 à 13h54

Prélèvement effectué le

14 Septembre 2004 à 10h40 par BASSO S., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Incert.	Limite de Qualité	Méthode
Aspect (qualitatif) Chlore résiduel total (mg/l)	Normal			Méthode ILB
	Non Déterminé			Méthode ILB
	Non Déterminé			Méthode ILB
Chlore résiduel libre (mg/l)	Non Déterminé			Méthode ILB
Bioxyde de chlore (mg Cl2/1)	Non Déterminé		0.0 - 200.0	Méthode ILB
Chlorite (µg/l)	8.0		0.0 - 25.0	Méthode ILB

DETERMINATIONS PHYSICO-CHIMIQUES

	D11111	(11111111111111111111111111111111111111		-		
		Résultat		Incert.	Limite de Qualité	Méthode
	. and a consisting miles	6.10			6.50 - 9.00	NF T 90-008
	pH à 20°C (Unités pH)	-				NF EN 27888
(3)	Conductivité à 25°C (µS/cm)	67.6				
		<0.2			0.0 - 0.5	NF EN ISO 7027
	Turbidité (NTU)				0.00 - 0.10	NF EN ISO 11732
©	Ammonium (mg NH4/1)	<0.05				740 12205
6	Nitrites (mg NO2/1)	<0.003			0.000 - 0.500	NF EN ISO 13395
		4.10			0.0 - 50.0	NF EN ISO 13395
@	Nitrates (mg NO3/1)	4.10				NF EN ISO 10304-1
(C)	Chlorures (mg/l)	4.1				
		2.7	40		0.0 - 250.0	NF EN ISO 10304-)
0	Sulfates (mg/l)					NF T 90-003
0	Dureté (degré F)	2.6			27	
		2.0				Flux continu
	Titre Alcalimétrique Complet (TAC) (°F)		2			NF EN 1484
6	Carbone Organique Total (mg C/l)	0.40				

Remarques et conclusions

Physico-chimie : Eau de pH acide.

Clermont-Ferrand, le 17 Septembre 2004

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

Page 1 / 2

FACULTÉS

ACCREDITATION Nº 1-1112 PORTÉE COMMUNIQUEE SUR DEMANDE

DE

CLERMONT-FERRAND

Remaraues concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

ET MÉDECINE

28. DE PHARMACIE TEL: 04 73 28 84 50 CEDEX 01 - FRANCE -

PLACE HENRI DUNANT FAX: 04 73 28 84 55

R. S. S. .

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 124672

Produit : Eau de consommation humaine au point de mise en distribution (Code de la Santé Publique -

article R 1321-1 et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

Réception au laboratoire le 14 Septembre 2004 à 13h54

Prélèvement effectué le

14 Septembre 2004 à 10h40 par BASSO S., DDASS 63

ANALYSES BACTERIOLOGIQUES

		Résultat	Incert.	Limite de Qualité	Méthode
ര	Coliformes Totaux (UFC/100 ml)	0		0	NF EN ISO 9308-1
	Escherichia coli (UFC/100 ml)	0		0	NF EN ISO 9308-1
	Entérocoques (UFC/100 ml)	0		0	NF EN ISO 7899
	Spore Bactérie Sulfito-réductrice (UFC/100	Non Déterminé		0	NF EN 26461-2
	ml)				
©	Dénombrement à 37° (UFC/ml)	0			NF EN ISO 6222
6	Dénombrement à 22° (UFC/ml)	1			NF EN ISO 6222

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne les paramètres analysés.

Clermont-Ferrand, le 17 Septembre 2004

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE

Remarques concernant ce rapport ;

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet. PLACE HENRI DUNANT B.P. 38 28, MEDECINE ET DE PHARMACIE DE FACULTES TEL: 04 73 28 84 50 FAX: 04 73 28 84 55 FRANCE CLERMONT-FERRAND CEDEX 01

RESULTATS D'ANALYSE DE TYPE B3C3C4bc

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72020

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h34

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS BACTERIOLOGIQUES

	Résultat	Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	0	0 - 50000	NF T 90414
Coliformes Thermotolérants (UFC/100 ml)	0	0 - 20000	NF T 90414
Streptocoques Fécaux (UFC/100 ml)	0	<10000	NF T 90416
Pseudomonas aeruginosa (UFC/100 ml)	Non Déterminé		ILB Méthod
Dénombrement à 37° (UFC/m1)	0		NF T 90401
Dénombrement à 22° (UFC/ml)	10		NF T 90402
Spore bactérie anaérobie sulfito réduct. (UFC/20m	1) 0		NF T 90415

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Limite de Qualité	Méthode
Odeur (qualitatif)	Sans odeur		
Saveur (qualitatif)	Sans saveur		
Température de l'eau (°C)	7.7	0.0 - 25.0	NF T 90100
Température de l'air (°C)	Non Déterminé		NF T 90100
Chlore résiduel total (mg/l)	Non Déterminé		
Chlore résiduel libre (mg/l)	Non Déterminé		
Bioxyde de chlore (mg Cl2/1)	Non Déterminé		
Chlorite (µg/l)	Non Déterminé		
Hydrogène sulfuré	Absence		ILB Méthod
Température de l'eau (°C) Température de l'air (°C) Chlore résiduel total (mg/l) Chlore résiduel libre (mg/l) Bioxyde de chlore (mg Cl2/l) Chlorite (µg/l)	7.7 Non Déterminé Non Déterminé Non Déterminé Non Déterminé Non Déterminé	0.0 - 25.0	NF T 90100

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par :

CLEMENT Bruno

Le Responsable de la diffusion :

CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS

63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72020

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h34

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4b)

		0-11-11-12 2000	(-1 E -	0.20	
	Résultat			Limite de Qualité	Méthode
Cadmium (mg/1)	<0.0005			0.0000 - 0.0050	NF T 90119
Plomb (mg/l)	<0.005			0.000 - 0.050	NF T 90119
HPA (Hydrocarbures Polycycliques Aromatiques en p	.g/1)				
* Fluoranthène (μg/l)	<0.001				NFT90115
* Benzo (3,4) Fluoranthène (μg/l)	<0.010				NFT90115
* Benzo (11,12) Fluoranthène (μg/l)	<0.005				NFT90115
* Benzo (3,4) Pyrène (μg/1)	<0.001				NFT90115
* Benzo (1,12) Pérylène (μg/l)	<0.020				NFT90115
* Indéno (1,2,3-cd) Pyrène (μg/l)	<0.020				NFT90115
* Total (μg/1)	0.000			0.000 - 1.000	NFT90115

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS

63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72020

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h34

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c)

	DB	I DIGITION I COND		CHITHIQUED	(c) bc	CICI	
			Résultat			Limite de Qualité	Méthode
	Arsenic (mg/l)		<0.005			0.000 - 0.100	NF T 90119
	Chrome total (mg/l)		<0.002			0.000 - 0.050	NF T 90119
	Mercure (mg/l)		<0.0002			0.0000 - 0.0010	ILB Method
	Sélénium (mg/l)		<0.005			0.000 - 0.010	NF T 90119
	Cyanures totaux (mg/1)		<0.01			0.000 - 0.050	NF T 90107
	Solvants Halogénés Volatils						
*	Chloroforme (μg/l)		<0.01				ILB Méthod
*	1,1,1-Trichloroéthane (μ g/l)		<0.01				ILB Méthod
*	Tétrachlorure de carbone (μg/1)	1	<0.01				ILB Méthod
*	Trichloroéthylène (μg/l)		<0.01				ILB Méthod
*	Bromodichlorométhane (μg/l)		<0.01				ILB Méthod
*	cis-1,3-Dichloropropène (μg/l)		<0.01				ILB Méthod
*	trans-1,3-Dichloropropène (μg/)	<0.01				ILB Méthod
*	1,1,2-Trichloroéthane (μg/l)		<0.05				ILB Méthod
*	Tétrachloroéthylène (μg/l)		<0.01				ILB Méthod
*	Chlorodibromométhane (µg/l)		<0.01				ILB Méthod
*	Chlorobenzène (µg/l)		<1				ILB Méthod
*	Bromoforme (μg/l)		<0.01				ILB Méthod
*	1,1,2,2-Tétrachloroéthane (μg/1)	<0.01				ILB Méthod
*	1,3-Dichlorobenzène (μg/l)		<0.05				ILB Méthod
*	1,4-Dichlorobenzène (μg/l)		<0.05				ILB Méthod
*	1,2-Dichlorobenzène (μg/l)		<0.05				ILB Méthod
	Pesticides Organoazotés (type t	riazine)					
*	Atrazine (μg/l)		<0.01				
*	Simazine (μg/l)		<0.01				
*	Propazine (μg/l)		<0.01				
*	Déséthylatrazine (μg/l)		<0.01				
*	Désisopropylatrazine (μg/l)		<0.01				

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL: (33) 04 73 28 84 50 - FAX: (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS

63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72020

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h34

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c) (SUITE)

		Résultat	Limite de Qualité	Méthode
	Pesticides organochlorés			
4	* HCB (μg/l)	<0.01		
1	* alpha HCH (μg/1)	<0.02		
ł	* Lindane (μg/l)	<0.02		
,	* Heptachlore (μg/l)	<0.02		
ý	* Aldrin (μg/l)	<0.02		
*	* Heptachlore epoxide (μg/l)	<0.02		
7	* Endosulfan (μg/l)	<0.02		
1	* Dieldrin (μg/l)	<0.02		
7	t Endrin (μg/l)	<0.02		
Ą	* DDT pp' (μg/l)	<0.02		
¥	* Β HCH (μg/1)	<0.02		
þ	* DDE pp' (μg/l)	<0.02		
4	* DDD op' (μg/1)	<0.02		
1	' DDD pp' (μg/l)	<0.02		
	Pesticides organophosphorés			
4	* Dimethoate (μg/1)	<0.01		
4	* EPN (μg/l)	<0.01		
Ą	* Malathion (μg/l)	<0.01		
y	Monocrotophos (μg/1)	<0.01		
Ą	* Parathion (μg/l)	<0.01		
¥	Sulfotepp (μg/l)	<0.01		
y	* TEPP (μg/1)	<0.01		

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72020

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h34

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

Chlorures (mg/1) Nitrites (mg NO2/1) Nitrates (mg NO3/1) Sulfates (mg/1)	ANALYSE DES ANIONS Résultat 1.0 <0.050 9.90 3.0	Limite de Qualité 0.0 - 50.0 0.0 - 250.0	Méthode Std Method NF T 90012 NF T 90012 ISO 10304
Hydrogénocarbonates (HCO3) (mg/1)	23.2		Calculé
Carbonates (CO3) (mg/1)	0.00		Calculé
Phosphore total (mg P205/1)	<0.10		NF T 90023
Fluorures (mg/1)	<0.05		ISO 10359
	ANALYSE DES CATIONS		
	Résultat	Limite de Qualité	Méthode
Ammonium (ma NH4/1)	< 0.10	0.00 4.00	150 7150 2

	ANALYSE Résultat	DES CATIONS Limite de Qualité	Méthode
Ammonium (mg NH4/1) <0.10	0.00 - 4.00	ISO 7150-2
Calcium (mg/1)	5.00		Std Method
Magnésium (mg/l)	1.60		Std Method
Sodium (mg/1)	4.7		NF T 90019
Potassium (mg/l)	1.2		NF T 90019
Manganèse (mg/l)	<0.005		NF T 90119
Fer (mg/l)	<0.005		Std Method
Zinc (mg/l)	<0.030	0.000 - 5.000	NF T 90112
Aluminium (mg/l)	<0.005		NF T 90119
Cuivre (mg/l)	<0.002		NF T 90119

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72020

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h34

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

ANALYSE PHYSICO-CHIMIOUE

~		CHITHEOD		
	Résultat		Limite de Qualité	Méthode
Conductivité à 25°C (μS/cm)	66.8			EN 27888
pH à 20°C (Unités pH)	5.90			NF T 90008
pH après marbre (à 20°C) (Unités pH)	6.50			
Titre Alcalimétrique Complet (TAC) (°F)	1.9			ILB Méthod
T.A.C. après marbre (°F)	5.6			ILB Méthod
Titre Hydrotimétrique Total (THT) (°F)	1.9			Calculé
Titre Hydrotimétrique Permanent (THP) (°F)	0.0			Calculé
Silice (mg SiO2/1)	19.50			ILB Method
Oxygène dissous (mg O2/1)	3.9			EN 25813
Couleur (quantitatif) (Hazen)	<5			ILB Méthod
Résidu sec à 175-185°C (mg/1)	63.0			NF T 90029
Oxydabilité à chaud en milieu acide (mg 02/1)	<0.5		*:	ISO 8467
Turbiditě (NTU)	<0.2			EN 27027
Titre Alcalimétrique (TA) (°F)	<0.1			ILB Méthod
Anhydride carbonique libre (mg CO2/1)	55.6			NF T 90011

Remarques et conclusions

Physico-chimie: Eau trés faiblement minéralisée.

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion :

CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72020

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA GARDE - LE SUQUE DE L'AIR

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h34

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANNEXE - BILAN IONIQUE

_	
	meq/1
1.0	0.03
<0.050	<0.01
9.90	0.16
3.0	0.06
23.2	0.38
0.00	<0.01
<0.10	<0.01
<0.05	<0.01
	0.63
mg/l	meq/1
<0.10	0.01
<0.10	< 0.01
5.00	<0.01 0.25
****	****
5.00	0.25
5.00 1.60	0.25 0.13
5.00 1.60 4.7	0.25 0.13 0.20
5.00 1.60 4.7 1.2	0.25 0.13 0.20 0.03
5.00 1.60 4.7 1.2 <0.005	0.25 0.13 0.20 0.03 <0.01
5.00 1.60 4.7 1.2 <0.005 <0.005	0.25 0.13 0.20 0.03 <0.01
5.00 1.60 4.7 1.2 <0.005 <0.005	0.25 0.13 0.20 0.03 <0.01 <0.01
	9.90 3.0 23.2 0.00 <0.10 <0.05

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL: (33) 04 73 28 84 50 - FAX: (33) 04 73 28 84 55

LA FAYOLLE

Bulletin d'analyse

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME

Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Réf: 234928

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES

Captage LA FAYOLLE (CAP)

Dans bâche par immersion

Réception au laboratoire :

06/10/2008 14:52:18

Prélèvement effectué le ;

06/10/2008 10:10:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

ļ	Analyse	Résultat	Analyses bactériologiques	Limite de Qualité	Réalisé le	Méthode
©	Coliformes Totaux	2 UFC/100 ml			06/10/2008	NF EN ISO 9308-1
©	Escherichia coli	0 UFC/100 ml		x <= 20000	06/10/2008	NF EN ISO 9308-1
©	Entérocoques	0 UFC/100 ml		x <= 10000	06/10/2008	NF EN ISO 7899-2
©	Spore Bactérie Sulfito-réductrice	0 UFC/100 ml			06/10/2008	NF EN 26461-2
(C)	Dénombrement à 22°	0 UFC/ml			06/10/2008	NF EN ISO 6222
Õ	Dénombrement à 37°	0 UFC/ml			06/10/2008	NF EN ISO 6222

Clermont-Ferrand, le 17/11/2008

Analyse validée par : ALAMÉ Josette Responsable de la diffusion : ALAMÉ Josette

Page 1 de 4

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND ET DE PHARMACIE CEDEX 01 - FRANCE - - 28, PLACE HENRI TEL: 04 73 28 84 50 DUNANT - B.P. 38 FAX: 04 73 28 84 55

(Suite.)

Réf: 234928

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage LA FAYOLLE (CAP) Dans bâche par immersion

Réception au laboratoire :

06/10/2008 14:52:18

Prélèvement effectué le :

06/10/2008 10:10:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyse	Résultat			Limite de Qualité	Réalisé le	Méthode
		Analyses	des traces organiq	ues		
© Indice Hydrocarbures	<0.1 mg/l			x <= 1,00	07/10/2008	NF EN ISO 9377-2
© Hydrocarbures Polycycliques	Aromatiques				06/10/2008	NF EN ISO 17993
- Benzo (3,4) Fluoranthène	<0.010 µg/l					
- Benzo (11,12) Fluoranthène	<0.005 µg/l					
- Benzo (1,12) Pérylène	<0.020 µg/l					
- Indéno (1,2,3-cd) Pyrène	<0.020 µg/l					
 Total hors benzo-pyrène 	<0.020 µg/l					
- Benzo (3,4) Pyrène	<0.001 µg/l					
© Composés Organiques Volatils	;				23/10/2008	Méthode ILB
- Benzène	<0.5 µg/l					
- 1,2-Dichloroéthane	<0.5 µg/l					
- Trichloroéthylène	<0.5 µg/l					
- 1,1,2,2-Tétrachloroéthylène	<0.5 µg/l					
- Tri+Tetra Chloréthylène	<0.5 µg/l					
© Pesticides organoazotés					07/10/2008	Méthode ILB
- Atrazine	<0.05 µg/l					
- Simazine	<0.05 µg/l					
- Déséthylatrazine	<0.05 µg/l					
Pesticides divers					07/10/2008	Méthode ILB
2,4-D	<0.05 µg/l					
Dicamba	<0.05 µg/l					
Dichlorprop-P	<0.05 µg/l	4				
Triclopyr	<0.05 µg/l					
Fluroxypir (1-méthylheptil ester)	<0,05 µg/l					
2,4-MCPA	<0,05 µg/i					
Picloram	<0,05 µg/l					
Pesticides divers					07/10/2008	Méthode ILB
Asulame	<0.05 µg/l					
Clopyralid	<0.05 µg/l					
Metsulfuron méthyl	<0,05 µg/l					
Pesticides totaux calculés	<0.05 µg/l					Calculé
Acrylamide	<0,10 µg/l				06/10/2008	Méthode ILB

Clermont-Ferrand, le 17/11/2008

Analyse validée par : ALAMÉ Josette Responsable de la diffusion : ALAMÉ Josette

Page 2 de 4

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SSAIS
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE ET I 63001 CLERMONT-FERRAND CEDEX

ET DE PHARMACIE CEDEX 01 - FRANCE - - 28, PLACE HENRI TEL: 04 73 28 84 50

DUNANT - B.P. 38 FAX: 04 73 28 84 55

(Suite.)

Réf: 234928

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage LA FAYOLLE (CAP) Dans bâche par immersion

Réception au laboratoire :

06/10/2008 14:52:18

Prélèvement effectué le :

06/10/2008 10:10:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

,	Analyse	Résultat		Limite de Qualité	Réalisé le	Méthode
			Analyses physico-chimique	S		
(C)	pH à 20°C	5.80 Unités pH			06/10/2008	NF T 90-008
(C)	Conductivité à 25°C	130.0 μS/cm			06/10/2008	NF EN 27888
(C)	Chlorures	12.0 mg/l			07/10/2008	NF EN ISO 10304-1
(C)	Nitrates	22.60 mg NO3/I			07/10/2008	NF EN ISO 10304-1
$(\hat{\mathbf{C}})$	Nitrites	<0.003 mg NO2/I			07/10/2008	NF EN ISO 13395
(C)	Sulfates	7.1 mg/l		x <= 250,0	07/10/2008	NF EN ISO 10304-1
(C)	Fluorures	<0.05 mg/l			07/10/2008	NF EN ISO 10304-1
(Ĉ)	Titre Alcalimétrique (TA)	<0.1 °F			06/10/2008	Méthode ILB
	Carbonates (CO3)	0.00 mg/l			09/10/2008	Calculé
0	Titre Alcalimétrique Complet (TAC)	1.5 °F			09/10/2008	Méthode ILB
	Hydrogénocarbonates (HCO3)	18.31 mg/l			10/10/2008	Calculé
(C)	T.A.C. après marbre	4.8 °F			13/10/2008	Méthode ILB
0	pH après marbre (à 20°C)	6.95 Unités pH			13/10/2008	NF T 90-008
(C)	Ammonium	0.06 mg NH4/I		x <= 4,00	07/10/2008	NF EN ISO 11732
(C)	Calcium	9.90 mg/l			13/10/2008	NF EN ISO 7980
Ĉ	Magnésium	3.20 mg/l			13/10/2008	NF EN ISO 7980
(C)	Sodium	5.5 mg/l		x <= 200,0	07/10/2008	NF T 90-019
0	Potassium	3.2 mg/l			07/10/2008	NF T 90-019
	Titre Hydrotimétrique Total (THT)	4.00 °F			16/10/2008	Calculé
Е	quilibre calco-carbonique				21/10/2008	Calculé
	Nature de l'eau	eau agressive -				
	pH à l'équilibre	9.80 Unités pH				
C	Carbone Organique Total	0.20 mg C/I		x <= 10	13/10/2008	NF EN 1484
	Turbidité	<0.2 NTU			06/10/2008	NF EN ISO 7027
	Indice Phénol	<0.025 mg/l		x <= 0,100	08/10/2008	T 90-109
	Cyanures totaux	<10,0 µg/l	*		14/10/2008	NF EN ISO 14403
	Agents de surface anioniques	<0,10 mg SABM/I		x <= 0,10	10/10/2008	NF EN 903
	Anhydride carbonique libre	27.8 mg CO2/l			07/10/2008	NF T 90-011

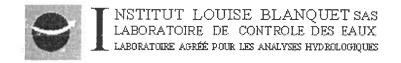
Clermont-Ferrand, le 17/11/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 3 de 4

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE


Remarques concernant ce rapport:

Sculs les paramètres marqués du symbole © sont éouverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

ET DE PHARMACIE CEDEX 01 - FRANCE -

- 28, PLACE HENRI TEL: 04 73 28 84 50 DUNANT - B.P. 38 FAX: 04 73 28 84 55

(Suite.)

Réf: 234928

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage LA FAYOLLE (CAP) Dans bâche par immersion

Réception au laboratoire :

06/10/2008 14:52:18

Prélèvement effectué le :

06/10/2008 10:10:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

1	Analyse	Résultat	Limite de Qualité	Réalisé le	Méthode
		Analyses de radioactivité (analyses	sous traitées)		
	Activité Beta Résiduelle	0.06 Bq/L		16/10/2008	calcul
	Activité Alpha Globale	<0,04 Bq/L		16/10/2008	NF M 60-801
	Activité Beta Globale	0.15 Bq/L		16/10/2008	NF M 60-800
	Activité Potassium 40	0.09 Bq/L		13/10/2008	calcul
	Activité volumique Tritium	<8,00 Bq/L		16/10/2008	NF M 60-802-1
	Dose Totale Indicative	<0.1 mSv/an		21/10/2008	Calcul
		Mesures sur le terrair	1		
	Aspect (qualitatif)	Normal		06/10/2008	Méthode ILB
(C')	рН	5.90 Unités pH		06/10/2008	NF T 90-008
	Température de l'air	8.0 °C		06/10/2008	Méthode ILB
	Température de l'eau	8.9 °C	x <= 25,0	06/10/2008	Méthode ILB
		Analyses de traces inorgar	niques		
(C)	Aluminium	<0.010 mg/l		07/10/2008	NF EN ISO 11885
()	Antimoine	<0.005 mg/l		17/10/2008	NF EN ISO 17294-2
	Arsenic	<0.005 mg/l	x <= 0,100	15/10/2008	NF EN ISO 15586
Õ	Baryum	<0.050 mg/l	x <= 1	06/10/2008	NF EN ISO 11885
(C)	Bore	<0.05 mg/l		06/10/2008	NF EN ISO 11885
C	Cadmium	<0.0005 mg/l		17/10/2008	NF EN ISO 17294-2
(C)	Chrome total	<0.010 mg/l	x <= 0,050	06/10/2008	NF EN ISO 11885
(C)	Cuivre	<0.010 mg/l		06/10/2008	NF EN ISO 11885
C	Fer	<0.010 mg/l		06/10/2008	NF EN ISO 11885
0	Manganèse	<0.010 mg/l		06/10/2008	NF EN ISO 11885
(C)	Nickel	<0.010 mg/l		06/10/2008	NF EN ISO 11885
(C)	Plomb	<0.005 mg/l		17/10/2008	NF EN ISO 17294-2
	Sélénium	<0.005 mg/l	x <= 0,010	16/10/2008	NF EN ISO 15586
Ċ	Zinc	<0.010 mg/l	x <= 5,000	06/10/2008	NF EN ISO 11885

Clermont-Ferrand, le 17/11/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 4 de 4

63001

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE PHARMACIE PLACE HENRI DE 28, DUNANT B.P. 38 CLERMONT-FERRAND CEDEX 01 - FRANCE -TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057_CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 126212

Produit : Eau de consommation humaine au point de mise en distribution (Code de la Santé Publique -

article R 1321-1 et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA FAYOLLE (CAP)

Réception au laboratoire le 14 Septembre 2004 à 13h56

Prélèvement effectué le

14 Septembre 2004 à 10h50 par BASSO S., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Incert.	Limite de Qualité	Méthode
Aspect (qualitatif)	Normal			Méthode ILB
Chlore résiduel total (mg/l)	Non Déterminé			Méthode ILB
Chlore résiduel libre (mg/l)	Non Déterminé			Méthode ILB
Bioxyde de chlore (mg Cl2/1)	Non Déterminé			Méthode ILB
Chlorite (µq/l)	Non Déterminé		0.0 - 200.0	Méthode ILB
mompérature de l'eau (°C)	8.0		0.0 - 25.0	Méthode ILB

DETERMINATIONS PHYSICO-CHIMIQUES

		Résultat	Incert.	Limite de Qualité	Méthode
© pH à 20°C (Uni+ác nH)	6.00 ~		6.50 - 9.00	NF T 90-008
-	eé à 25°C (μS/cm)	111.0			NF EN 27888
© Turbidité		<0.2		0.0 - 0.5	NF EN ISO 7027
© Ammonium ('	<0.05		0.00 - 0.10	NF EN ISO 11732
© Nitrites (<0.003		0.000 - 0.500	NF EN ISO 13395
© Nitrates (16.20 —		0.0 - 50.0	NF EN ISO 13395
© Chlorures		9.1			NF EN ISO 10304-1
© Sulfates (• •	7.5		0.0 - 250.0	NF EN ISO 10304-)
© Dureté (de		2.6			NF T 90-003
,	limétrique Complet (TAC) (°F)	1.7			Flux continu
	ganique Total (mg C/l)	0.40			NF EN 1484

Clermont-Ferrand, le 20 Septembre 2004

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

ACCREDITATION N* 1-1112 PORTÉE COMMUNIQUÉE Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet. PLACE HENRI DUNANT MÉDECINE ET DE PHARMACIE 2.8 FACULTÉS DE FAX: 04 73 28 84 55 TEL: 04 73 28 84 50 CLERMONT-FERRAND CEDEX 01 - FRANCE -

Page 1 / 2

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 126212

Produit : Eau de consommation humaine au point de mise en distribution (Code de la Santé Publique -

article R 1321-1 et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA FAYOLLE (CAP)

Réception au laboratoire le 14 Septembre 2004 à 13h56

Prélèvement effectué le

14 Septembre 2004 à 10h50 par BASSO S., DDASS 63

ANALYSES BACTERIOLOGIQUES

		Résultat	Incert.	Limite de Qualité	Méthode
ര	Coliformes Totaux (UFC/100 ml)	0		0	NF EN ISO 9308-1
	Escherichia coli (UFC/100 ml)	0		0	NF EN ISO 9308-1
	Entérocoques (UFC/100 ml)	0		0	NF EN ISO 7899
	Spore Bactérie Sulfito-réductrice (UFC/100	Non Déterminé)C	0	NF EN 26461-2
6	ml) Dénombrement à 37° (UFC/ml)	o			NF EN ISO 6222
©	Dénombrement à 22° (UFC/ml)	4			NF EN ISO 6222

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne les paramètres analysés.

Clermont-Ferrand, le 20 Septembre 2004

Analyse validée par :

ALAME Josette

Le Responsable de la diffusion : ALAME Josette

PORTÉE COMMUNIQUÉE SUR DEMANDE

Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

PLACE HENRI DUNANT ET DE PHARMACIE 28. MEDECINE FAX: 04 73 28 84 55 CEDEX 01 - FRANCE -TEL: 04 73 28 84 50 CLERMONT-FERRAND

RESULTATS D'ANALYSE DE TYPE B3C3C4bc

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72019

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA FAYOLLE (CAP)

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h32

Prélèvement effectué le

25 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS BACTERIOLOGIQUES

	Résultat	Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	0	0 - 50000	NF T 90414
Coliformes Thermotolérants (UFC/100 ml)	0	0 - 20000	NF T 90414
Streptocoques Fécaux (UFC/100 ml)	0	<10000	NF T 90416
Pseudomonas aeruginosa (UFC/100 ml)	Non Déterminé		ILB Méthod
Dénombrement à 37° (UFC/m1)	0		NF T 90401
Dénombrement à 22° (UFC/ml)	4		NF T 90402
Spore bactérie anaérobie sulfito réduct. (UFC/20m	n1) 0		NF T 90415

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat

Odeur (qualitatif)	Sans odeur		
Saveur (qualitatif)	Sans saveur		
Température de l'eau (°C)	8.8	0.0 - 25.0	NF T 90100
Température de l'air (°C)	Non Déterminé		NF T 90100
Chlore résiduel total (mg/l)	Non Déterminé		
Chlore résiduel libre (mg/l)	Non Déterminé		
Bioxyde de chlore (mg Cl2/1)	Non Déterminé		
Chlorite (µg/l)	Non Déterminé		
Hydrogène sulfuré	Λbsence		ILB Méthod

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno Le Responsable de la diffusion :

CLEMENT Bruno

Limite de Qualité

Méthode

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME

Service Santé-Environnement

1.RUE D'ASSAS

63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72019

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du dêcret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA FAYOLLE (CAP)

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h32

Prélèvement effectué le 25 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIOUES (type C4b)

			00 0111111120000	(0100	012)	
		Résultat			Limite de Qualité	Méthode
	Cadmium (mg/l)	<0.0005			0.0000 - 0.0050	NF T 90119
	Plomb (mg/l)	<0.005			0.000 - 0.050	NF T 90119
	HPA (Hydrocarbures Polycycl	liques Aromatiques en μg/l)				
1	' Fluoranthène (μg/l)	<0.001				NFT90115
1	* Benzo (3,4) Fluoranthène (µ	ıg/l) < 0.010				NFT90115
*	Benzo (11,12) Fluoranthène	(μg/1) < 0.00 5				NFT90115
'n	Benzo (3,4) Pyrène (μg/l)	<0.001				NFT90115
ź	' Benzo (1,12) Pérylène (μg/l	<0.020				NFT90115
7	′ Indéno (1,2,3-cd) Pyrène (μ	ug/1) < 0.020				NFT90115
,	r Total (μg/l)	0.000			0.000 - 1.000	NFT90115

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par :

CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72019

Produit : Eau de consonmation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA FAYOLLE (CAP)

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h32

Prélèvement effectué le 25 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c)

	DETERMINATIONS PR	TOTCO-CUIMIQUES	(cype	(40)	
	Résu	ltat		Limite de Quali	té Méthode
Arsenic (mg/l)	<0.	005		0.000 - 0.100	NF T 90119
Chrome total (mg/l)	<0.	002		0.000 - 0.050	NF T 90119
Mercure (mg/1)	<0.	0002		0.0000 - 0.001	0 ILB Method
Sélénium (mg/l)	<0.	005		0.000 - 0.010	NF T 90119
Cyanures totaux (mg/1)	<0.	01		0.000 - 0.050	NF T 90107
Solvants Halogénés Volatil	s				
* Chloroforme (μg/l)	<0.	01			ILB Méthod
* 1,1,1-Trichloroéthane ($\mu g/$	1) <0.	01			ILB Méthod
* Tétrachlorure de carbone (μg/1) < 0.	01			ILB Méthod
* Trichloroéthylène (μg/l)	<0.	01			ILB Méthod
* Bromodichlorométhane (μg/1)	-	01			ILB Méthod
* cis-1.3-Dichloropropēne (μ_0	g/1) <0.	01			ILB Méthod
* trans-1,3-Dichloropropène	(μg/l) <0.	01			ILB Méthod
* 1,1,2-Trichloroéthane ($\mu g/$	1) <0.0	05			ILB Méthod
* Tétrachloroéthylène ($\mu g/l$)	<0.	01			ILB Méthod
* Chlorodibromométhane (μg/l)) <0.0	01			ILB Méthod
* Chlorobenzène (μg/l)	<1				ILB Méthod
* Bromoforme (μg/l)	<0.0	01			ILB Méthod
* 1,1,2,2-Tétrachloroéthane	(μg/1) <0.0	01			ILB Méthod
* 1,3-Dichlorobenzène ($\mu g/I$)	<0.0	05			ILB Méthod
* 1,4-Dichlorobenzène ($\mu g/1$)	<0.0	05			ILB Méthod
* 1,2-Dichlorobenzène ($\mu g/1$)	<0.0	05			ILB Méthod
Pesticides Organoazotés (ty	ype triazine)				
* Atrazine (μg/l)	<0.0	01			
* Simazine (μg/l)	<0.0)1			
* Propazine (μg/1)	<0.0	01			
* Déséthylatrazine (μg/l)	<0.0	01			
* Désisopropylatrazine ($\mu g/1$)) <0.0)1			

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion

CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28 PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT PERRAND CEDEX - FRANCE - TEL: (33) 04 73 28 84 50 - FAX: (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS

63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72019

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA FAYOLLE (CAP)

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h32

Prélèvement effectué le 25 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c) (SUITE)

		Résultat	(11)	Limite de Qualité	Méthode
	Pesticides organochlorés			,	
1	* HCB (µg/1)	<0.01			
7	* alpha HCH (μg/l)	<0.02			
3	* Lindane (μg/1)	<0.02			
7	* Heptachlore (μg/l)	<0.02			
7	* Aldrin (μg/l)	<0.02			
1	* Heptachlore epoxide (μg/l)	<0.02			
4	* Endosulfan (μg/l)	<0.02			
ý	[*] Dieldrin (μg/l)	<0.02			
4	* Endrin (μg/l)	<0.02			
4	* DDT pp' (μg/l)	<0.02			
,	' Β HCH (μg/1)	<0.02			
k	* DDE pp' (μg/1)	<0.02			
4	' DDD op' (µg/l)	<0.02			
k	' DDD pp' (μg/l)	<0.02			
	Pesticides organophosphorés				
*	Dimethoate (μg/1)	<0.01			
*	「EPN (μg/l)	<0.01			
*	'Malathion (μg/1)	<0.01			
*	Monocrotophos (μg/l)	<0.01			
*	Parathion (μg/1)	<0.01			
	Sulfotepp (μg/l)	<0.01			
*	TEPP (μg/1)	<0.01			

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion :

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72019

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA FAYOLLE (CAP)

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h32

Prélèvement effectué le 25 Octobre 2000 par DE ESCOBAR W, DDASS 63

ANALYSE DES ANIONS

	Résultat	Limite de Qualité	Méthode
Chlorures (mg/l)	8.9		Std Method
Nitrites (mg NO2/1)	<0.050		NF T 90012
Nitrates (mg NO3/1)	32.80	0.0 - 50.0	NF T 90012
Sulfates (mg/l)	4.6	0.0 - 250.0	ISO 10304
Hydrogénocarbonates (HCO3) (mg/1)	17.1		Calculé
Carbonates (CO3) (mg/l)	0.00		Calculé
Phosphore total (mg P2O5/1)	<0.10		NF T 90023
Fluorures (mg/l)	<0.05		ISO 10359

ANALYSE DES CATIONS

	Résultat	Limite de Qualité	Méthode
Ammonium (mg NH4/1)	<0.10	0.00 - 4.00	ISO 7150-2
Calcium (mg/l)	11.00		Std Method
Magnésium (mg/l)	3.80		Std Method
Sodium (mg/l)	5.3		NF T 90019
Potassium (mg/l)	3.0		NF T 90019
Manganèse (mg/l)	<0.005		NF T 90119
Fer (mg/l)	<0.005		Std Method
Zinc (mg/l)	<0.030	0.000 - 5.000	NF T 90112
Aluminium (mg/l)	<0.005		NF T 90119
Cuivre (mg/l)	<0.002		NF T 90119

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL: (33) 04 73 28 84 50 - FAX: (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72019

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA FAYOLLE (CAP)

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h32

Prélèvement effectué le 25 Octobre 2000 par DE ESCOBAR W, DDASS 63

ANALYSE PHYSICO-CHIMIOUE

		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Résultat		Limite de Qualité	Méthode
Conductivité à 25°C (μS/cm)	139.0			EN 27888
pH à 20°C (Unités pH)	5.90			NF T 90008
pH après marbre (à 20°C) (Unités pH)	6.70			
Titre Alcalimétrique Complet (TAC) (°F)	1.4			ILB Méthod
T.A.C. après marbre (°F)	3.9			ILB Méthod
Titre Hydrotimétrique Total (THT) (°F)	4.3			Calculé
Titre Hydrotimétrique Permanent (THP) (°F)	2.9			Calculé
Silice (mg SiO2/1)	20.20			ILB Method
Oxygène dissous (mg O2/1)	8.2			EN 25813
Couleur (quantitatif) (Hazen)	<5			ILB Méthod
Résidu sec à 175-185°C (mg/l)	125.0			NF T 90029
Oxydabilité à chaud en milieu acide (mg 02/1)	<0.5			ISO 8467
Turbidité (NTU)	<0.2			EN 27027
Titre Alcalimétrique (TA) (°F)	<0.1			ILB Méthod
Anhydride carbonique libre (mg CO2/1)	34.7			NF T 90011

Remarques et conclusions

Physico-chimie : Eau faiblement minéralisée.

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion :

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72019

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA FAYOLLE (CAP)

CAPTAGE

Réception au laboratoire le 25 Octobre 2000 à 13h32

Prélèvement effectué le 25 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANNEXE - BILAN IONIQUE

	mg/1	meq/1
Chlorures	8.9	0.25
Nitrites	<0.050	<0.01
Nitrates	32.80	0.53
Sulfates	4.6	0.10
Hydrogénocarbonates (HCO3)	17.1	0.28
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	<0.05	<0.01
TOTAL ANIONS		1.16
	mg/I	meq/l
Ammonium	<0.10	<0.01
Calcium	11.00	0.55
Magnésium	3.80	0.31
Sodium	5.3	0.23
Potassium	3.0	0.08
Manganèse	<0.005	<0.01
Fer	<0.005	<0.01
Zinc	<0.030	<0.01
Aluminium	<0.005	<0.01
Cuivre	<0.002	<0.01
TOTAL CATIONS		1.17

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion CLEMENT Bruno

SOUS LES FAYARDS

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME

Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND SIAEP HAUT-LIVRADOIS 63220 ARLANC

Réf: 234929

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES
Captage SOUS LES FAYARDS

Arrivée drain

Réception au laboratoire :

07/10/2008 14:40:00

Prélèvement effectué le :

07/10/2008 11:15:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyse	Résultat			L	imite de Qualité	Réalisé le	Méthode
		Analys	es bactériologiq	ques			
© Coliformes Totaux	2 UFC/100 ml			•		07/10/2008	NF EN ISO 9308-1
© Escherichia coli	0 UFC/100 ml				x <= 20000	07/10/2008	NF EN ISO 9308-1
© Entérocoques	0 UFC/100 ml				x <= 10000	07/10/2008	NF EN ISO 7899-2
© Spore Bactérie Sulfito-réductrice	e 0 UFC/100 ml					07/10/2008	NF EN 26461-2
© Dénombrement à 22°	2 UFC/ml					07/10/2008	NF EN ISO 6222
© Dénombrement à 37°	0 UFC/ml					07/10/2008	NF EN ISO 6222
		Analyses	des traces orga	niques	3		
© Indice Hydrocarbures	<0.1 mg/l				x <= 1,00	07/10/2008	NF EN ISO 9377-2
Hydrocarbures Polycycliques A	Aromatiques					07/10/2008	NF EN ISO 17993
Fluoranthène	<0.001 µg/l						
Benzo(b)fluoranthène	<0.010 µg/l						
Benzo(k)fluoranthène	<0.005 µg/i						
Benzo(a)pyrène	<0.001 µg/l						
Benzo(ghi)pérylène	<0.020 µg/l			=1			
Indeno(1,2,3-cd)pyrène	<0.020 µg/l						
Total des 6 subsances	<0.020 µg/l				x <= 1,000		
© Benzène	<0.5 µg/l					15/10/2008	NF ISO 11423-1
⊚ Solvants Halogénés Volatils						15/10/2008	Méthode ILB
 Trichloroéthylène 	<0.50 µg/l					10/10/2000	
 Tétrachloroéthylène 	<0.50 µg/l						
 1,2-Dichloroéthane 	<0.50 µg/l						
 Total tetra+trichloroéthylène 	<0.50 µg/l						
Chlorure de vinyle	<0.30 µg/l					15/10/2008	Méthode ILB

Clermont-Ferrand, le 04/11/2008

Analyse validée par : ALAMÉ Josette Responsable de la diffusion : ALAMÉ Josette

Page 1 de 2

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

ET DE PHARMACIE CEDEX 01 - FRANCE -

- 28, PLACE HENRI DUNANT TEL: 04 73 28 84 50 FAX: 04

DUNANT - B.P. 38 FAX: 04 73 28 84 55

(Suite.)

Réf: 234929

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage SOUS LES FAYARDS

Arrivée drain

Réception au laboratoire :

07/10/2008 14:40:00

Prélèvement effectué le :

07/10/2008 11:15:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

	Analyse	Résultat	Limite de Qualité	Réalisé le	Méthode			
		Analyses physico-chimique	es					
C	pH à 20°C	5.85 Unités pH		07/10/2008	NF T 90-008			
(C)	Conductivité à 25°C	97.9 μS/cm		07/10/2008	NF EN 27888			
(C)	Résistivité à 25°C	10215 ohm.cm		08/10/2008	NF EN 27888			
((*)	Potassium	0.9 mg/l		15/10/2008	NF T 90-019			
C	Indice Phénol	<0.025 mg/l	x <= 0,100	13/10/2008	T 90-109			
C	Cyanures totaux	<10,0 µg/l		14/10/2008	NF EN ISO 14403			
(C)	Agents de surface anioniques	<0,10 mg SABM/l	x <= 0,10	10/10/2008	NF EN 903			
	Analyses de radioactivité (analyses sous traitées)							
	Activité Beta Résiduelle	0.03 Bq/L		16/10/2008	calcul			
	Activité Alpha Globale	<0,03 Bq/L		16/10/2008	NF M 60-801			
	Activité Beta Globale	<0,05 Bq/L		16/10/2008	NF M 60-800			
	Activité Potassium 40	0.02 Bq/L		13/10/2008	calcul			
	Activité volumique Tritium	<1.00 Bq/L		21/10/2008	NF M 60-802-1			
	Dose Totale Indicative	<8,00 mSv/an		16/10/2008	Calcul			
		Mesures sur le terrain						
	Aspect (qualitatif)	Normal		07/10/2008	Méthode ILB			
	Hydrogène sulfuré	Absence		07/10/2008	Méthode ILB			
(Ç)	pH	5.90 Unités pH		07/10/2008	NF T 90-008			
	Température de l'air	9.0 °C		07/10/2008	Méthode ILB			
	Température de l'eau	8.1 °C	x <= 25,0	07/10/2008	Méthode ILB			
		Analyses de traces inorganique	ues					
(3)	Aluminium	<0.010 mg/l		07/10/2008	NF EN ISO 11885			
C	Baryum	<0.050 mg/l	x <= 1	07/10/2008	NF EN ISO 11885			
(C)	Chrome total	<0.010 mg/l	x <= 0,050	07/10/2008	NF EN ISO 11885			
(C)	Cuivre	<0.010 mg/l		07/10/2008	NF EN ISO 11885			
(C)	Fer	<0.010 mg/l		07/10/2008	NF EN ISO 11885			
(Ĉ)	Mercure	<0.0002 mg/l	x <= 0,0010	08/10/2008	NF EN 1483			
O	Plomb	<0.005 mg/l		17/10/2008	NF EN ISO 17294-2			
O	Zinc	<0.010 mg/l	x <= 5,000	07/10/2008	NF EN ISO 11885			

Clermont-Ferrand, le 04/11/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 2 de 2

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

ET DE PHARMACIE CEDEX 01 - FRANCE -

- 28, PLACE HENRI TEL: 04 73 28 84 50

DUNANT - B.P. 38 FAX: 04 73 28 84 55

RESULTATS D'ANALYSES

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72021

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage SOUS LES FAYARDS

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h58

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

ş.	Résultat	Limite de Qualité	Méthode
Odeur (qualitatif)	Sans odeur		
Saveur (qualitatif)	Sans saveur		
Température de l'eau (°C)	8.2	0.0 - 25.0	NF T 9010
Température de l'air (°C)	Non Déterminé		NF T 9010
Chlore résiduel total (mg/l)	Non Déterminé		
Chlore résiduel libre (mg/l)	Non Déterminé		
Bioxyde de chlore (mg C12/1)	Non Déterminé		
-Chlorite (μg/l)	Non Déterminé		
Hydrogène sulfuré	Absence		ILB Métho

DETERMINATIONS BACTERIOLOGIQUES

	Résultat	Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	2	0 - 50000	NF T 9041
Coliformes Thermotolérants (UFC/100 ml)	2	0 - 20000	NF T 9041
Streptocoques Fécaux (UFC/100 ml)	0	<10000	NF T 9041
Pseudomonas aeruginosa (UFC/100 m1)	Non Déterminé		ILB Méthou
Dénombrement à 37° (UFC/ml)	0		NF T 9040.
Dénombrement à 22° (UFC/ml)	2		NF T 9040
Spore bactérie anaérobie sulfito réduct. (UFC/	20m1) 0		NF T 9041:

Remarques et conclusions

Bactériologie : Echantillon contaminé.

Clermont-Ferrand, le 13 Décembre 2000

Analyse validée par : ALAME Josette Le Responsable de la diffusior

ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

ANALYSE OFFICIELLE B3C3C4abcd

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72021

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage SOUS LES FAYARDS

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h58

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4a)

Ē	Résultat	Limite de Qualité	Méthode
Azote KJELDAHL (mg N/1)	<1.00		EN 25663
Hydrocarbures totaux (mg/1)	<0.01	0.00 - 1.00	NF T 9011
Agents de surface anioniques (mg SABM/1)	<0.10		EN 903
Indice Phénol (mg/l)	<0.025	0.000 - 0.100	NF T 9010

DETERMINATIONS PHYSICO-CHIMIQUES (type C4b)

Ţ	DETERMINATIONS LUISICO-CHIMIĞORS	(rybe c	-4D)	
	Résultat		Limite de Qualité	Méthode
Cadmium (mg/l)	<0.0005		0.0000 - 0.0050	NF T 9011
Plomb (mg/l)	<0.005		0.000 - 0.050	NF T 9011
HPA (Hydrocarbures Polycycli	ques Aromatiques en μg/l)			
* Fluoranthène (μg/l)	<0.001			NFT90115
* Benzo (3,4) Fluoranthène (μg	(1/1) <0.010			NFT90115
* Benzo (11,12) Fluoranthène (μg/1) < 0.005			NFT90115
* Benzo (3,4) Pyrène (μg/l)	<0.001			NFT90115
* Benzo (1,12) Pérylène (μg/l)	<0.020			NFT90115
* Indéno (1,2,3-cd) Pyrène (μg	<0.020			NFT90115
* Total (µg/l)	0.000		0.000 - 1.000	NFT90115

Clermont-Ferrand, le 13 Décembre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusion

ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PEÁCE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1, RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72021

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage SOUS LES FAYARDS

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h58

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c)

	Résultat	Limite de Qualité	Méthode
Arsenic (mg/l)	<0.005	0.000 - 0.100	NF T 9011
Chrome total (mg/l)	<0.002	0.000 - 0.050	NF T 9011!
Mercure (mg/l)	<0.0002	0.0000 - 0.0010	ILB Method
Sélénium (mg/l)	<0.005	0.000 - 0.010	NF T 9011!
Cyanures totaux (mg/l)	<0.01	0.000 - 0.050	NF T 9010.
Solvants Halogénés Volatils			
* Chloroforme (μg/l)	<0.01		ILB Méthod
* 1,1,1-Trichloroéthane (μg/l)	<0.01		ILB Méthoc
* Tétrachlorure de carbone (μg/l)	<0.01		ILB Méthoc
* Trichloroéthylène (μg/l)	<0.01		ILB Méthoc
* Bromodichlorométhane (μg/l)	<0.01		ILB Méthoc
* cis-1,3-Dichloropropène (μg/l)	<0.01		ILB Méthoc
* trans-1,3-Dichloropropène (μg/l)	<0.01		ILB Méthoc
* 1,1,2-Trichloroéthane (μg/l)	<0.05		ILB Méthoc
* Tétrachloroéthylène (μg/l)	<0.01		ILB Mêthoc
* Chlorodibromométhane (μg/l)	<0.01		ILB Méthoc
* Chlorobenzène (μg/l)	<1		ILB Méthoc
* Bromoforme (μg/l)	<0.01		ILB Méthoc
* 1,1,2,2-Tétrachloroéthane (μg/l)	<0.01		ILB Méthoc
* 1,3-Dichlorobenzène (μg/l)	<0.05		ILB Méthoc
* 1,4-Dichlorobenzène (μg/l)	<0.05		ILB Méthoc
* 1,2-Dichlorobenzēne (μg/l)	<0.05	#T	ILB Méthoc
Pesticides Organoazotés (type triazine)			
* Atrazine (μg/l)	<0.01		

Clermont-Ferrand, le 13 Décembre 2000

* Simazine (µg/1)

* Propazine (µg/1) * Déséthylatrazine (μg/I)

* Désisopropylatrazine (µg/l)

Analyse validée par : ALAME Josette

< 0.01

<0.01

<0.01

<0.01

Le Responsable de la diffusion ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72021

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage SOUS LES FAYARDS

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h58

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W., DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c) (SUITE)

	2222141111111		OTTITION	(-, -	0.10	(00110)	
		Résulta	t		•	Limite de Qualité	Méthode
Pesticides organochi	orés						
* HCB (µg/l)		<0.01					
* alpha HCH (μg/l)		<0.02					
* Lindane (μg/l)		<0.02					
* Heptachlore (μg/l)		<0.02					
* Aldrin (μg/l)		<0.02					
* Heptachlore epoxide	(μg/1)	<0.02					
* Endosulfan (μg/l)		<0.02					
* Dieldrin (μg/l)		<0.02					
* Endrin (μg/l)		<0.02				V	
* DDT pp' (μg/1)		<0.02					
* B HCH (μg/1)		<0.02					
* DDE pp' (μg/1)		<0.02					
* DDD op' (μg/l)		<0.02					
* DDD pp' (μg/l)		<0.02					
Pesticides organopho	sphorés						
* Dimethoate (μg/1)		<0.01					
* EPN (μg/l)		<0.01					
* Malathion (μg/l)		<0.01					
* Monocrotophos (μg/l)		<0.01					
* Parathion (μg/l)		<0.01					
* Sulfotepp (μg/l)		<0.01				Ų	
* TEPP (μg/l)		< 0.01					

DETERMINATIONS PHYSICO-CHIMIQUES (type C4d)

	Résultat	Limite de Qualité	Méthode
Demande Biochimique en Oxygène - DBO/5 (mg 02/1)	<3.0		NF T 9010.
Demande Chimique en Oxygène (mg 02/1)	<30		NF T 9010.
Bore (mg/l)	<0.050		ILB Métho
Baryum (mg/l)	<0.050	0.000 - 1.000	ILB Métho
Substances extractibles au chloroforme (mg/l)	<0.10		ILB Métho
Matières en suspension (mg/l)	<1.0		NF EN 872

Clermont-Ferrand, le 13 Décembre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusion ALAME Josette

llane

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL: (331 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72021

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage SOUS LES FAYARDS

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h58

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANALYSE PHYSICO-CHIMIOUE

111	min impico-citi	TITOTI	
	Résultat	Limite de Qualité	Méthode
Conductivité à 25°C (µS/cm)	63.6		EN 27888
pH à 20°C (Unités pH)	6.00		NF T 9000
pH après marbre (à 20°C) (Unités pH)	7.00		
Titre Alcalimétrique Complet (TAC) (°F)	1.5		ILB Métho
T.A.C. après marbre (°F)	6.2		ILB Métho
Titre Hydrotimétrique Total (THT) (°F)	1.8		Calculé
Titre Hydrotimétrique Permanent (THP) (°F)	0.3		Calculé
Silice (mg Si02/1)	26.10		ILB Method
°Oxygène dissous (mg O2/1)	8.8		EN 25813
Couleur (quantitatif) (Hazen)	<5		ILB Méthod
Résidu sec à 175-185°C (mg/l)	72.0		NF T 90025
Oxydabilité à chaud en milieu acide (mg 02/1)	<0.5		ISO 8467
Turbidité (NTU)	<0.2		EN 27027
Titre Alcalimétrique (TA) (°F)	<0.1		ILB Méthoc
Anhydride carbonique libre (mg CO2/1)	38.2		NF T 9001;

Remarques et conclusions

Physico-chimie: Eau trés faiblement minéralisée.

Clermont-Ferrand, le 13 Décembre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusion ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL: [331 04 73 28 84 50 - FAX: [33] 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72021

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage SOUS LES FAYARDS

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h58

Prélèvement effectué le

24 Octobre 2000 par DE ESCOBAR W. DDASS 63

	ANALYSE DES ANIONS		
	Résultat	Limite de Qualité	Méthode
Chlorures (mg/l)	3.2		Std Meth
Nitrites (mg NO2/1)	<0.050		NF T 900
Nitrates (mg NO3/1)	9.60	0.0 - 50.0	NF T 900.
Sulfates (mg/l)	5.7	0.0 - 250.0	ISO 1030
Hydrogénocarbonates (HCO3) (mg/l)	18.3		Calculé
Carbonates (CO3) (mg/l)	0.00		Calculé
Phosphore total (mg P205/1)	<0.10		NF T 9002
Fluorures (mg/l)	<0.05		ISO 10355
•			

ANALYSE DES CATIONS	19	
Résultat	Limite de Qualité	Méthode
<0.10	0.00 - 4.00	ISO 7150-
5.20		Std Metho
1.20		Std Metho
6.0		NF T 9001
0.8		NF T 9001
<0.005		NF T 9011
0.009		Std Metha
<0.030	0.000 - 5.000	NF T 9011
0.017		NF T 9011
<0.002		NF T 9011
	Résultat <0.10 5.20 1.20 6.0 0.8 <0.005 0.009 <0.030 0.017	Résultat Limite de Qualité <0.10 0.00 - 4.00 5.20 1.20 6.0 0.8 <0.005 0.009 <0.030 0.000 - 5.000 0.017

Clermont-Ferrand, le 13 Décembre 2000

Analyse validée par : ALAME Josette Le Responsable de la diffusio ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72021

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage SOUS LES FAYARDS

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h58

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANNEXE - BILAN IONIQUE

	mg/I	meq/I
Chlorures	3.2	0.09
Nitrites	<0.050	<0.01
Nitrates	9.60	0.15
Sulfates	5.7	0.12
Hydrogênocarbonates (HCO3)	18.3	0.30
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	< 0.05	<0.01
TOTAL ANIONS		0.66
	mg/I	meq/l
Ammonium	<0.10	<0.01
Calcium	5.20	0.26
Magnésium	1.20	0.10
Sodium	6.0	0.26
Potassium	0.8	0.02
Manganèse	<0.005	<0.01
Fer	0.009	<0.01
Zinc	<0.030	<0.01
Aluminium	0.017	<0.01
Cuivre	<0.002	<0.01
TOTAL CATIONS		0.64

Clermont-Ferrand, le 13 Décembre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusion ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

LE LAVOIR

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME

Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Réf: 234933

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES

Captage LE LAVOIR

MELANGE DE CAPTAGE (3) - Dans bâche par immersion

Réception au laboratoire :

06/10/2008 14:48:00

Prélèvement effectué le :

06/10/2008 12:05:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

	Analyse	Résultat					Lim	ite de Qualité	Réalisé le	Méthode
			Analys	ses	bactéri	ologique	S			
C	Coliformes Totaux	0 UFC/100 ml							06/10/2008	NF EN ISO 9308-1
C	Escherichia coli	0 UFC/100 ml						x <= 20000	06/10/2008	NF EN ISO 9308-1
C	Entérocoques	0 UFC/100 ml						x <= 10000	06/10/2008	NF EN ISO 7899-2
C	Spore Bactérie Sulfito-réductrice	0 UFC/100 ml							06/10/2008	NF EN 26461-2
Ĉ	Dénombrement à 22°	0 UFC/ml							06/10/2008	NF EN ISO 6222
C	Dénombrement à 37°	0 UFC/ml							06/10/2008	NF EN ISO 6222
			Analyses	des	s traces	organiq	ques			
C	Indice Hydrocarbures	<0.1 mg/l						x <= 1,00	07/10/2008	NF EN ISO 9377-2
	Hydrocarbures Polycycliques Ai	romatiques							06/10/2008	NF EN ISO 17993
	Fluoranthène	<0.001 µg/l								
	Benzo(b)fluoranthène	<0.010 µg/l								
	Benzo(k)fluoranthène	<0.005 µg/l								
	Benzo(a)pyrène	<0.001 µg/l								
	Benzo(ghi)pérylène	<0.020 µg/l								
	Indeno(1,2,3-cd)pyrène	<0.020 µg/l								
	Total des 6 subsances	<0.020 µg/l						x <= 1,000		
(C)	Benzène	<0.5 µg/l							15/10/2008	NF ISO 11423-1
©	Solvants Halogénés Volatils								15/10/2008	Méthode ILB
-	Trichloroéthylène	<0.50 µg/l								
-	Tétrachloroéthylène	<0.50 µg/l								
-	1,2-Dichloroéthane	<0.50 µg/l								
-	Total tetra+trichloroéthylène	<0.50 µg/l								
(Č)	Chlorure de vinyle	<0.30 µg/l							15/10/2008	Méthode ILB

Clermont-Ferrand, le 24/10/2008

Analyse validée par : GOUZOUX Laurent Responsable de la diffusion :

ALAMÉ Josette

Page 1 de 2

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

(Suite.)

Réf: 234933

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES

Captage LE LAVOIR

MELANGE DE CAPTAGE (3) - Dans bâche par immersion

Réception au laboratoire :

06/10/2008 14:48:00

Prélèvement effectué le :

06/10/2008 12:05:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

	Analyse	Résultat	Limite de Qualité	Réalisé le	Méthode
		Analyses physico-chimique	s		
C	pH à 20°C	5.90 Unités pH		06/10/2008	NF T 90-008
C	Conductivité à 25°C	63.7 µS/cm		06/10/2008	NF EN 27888
C	Résistivité à 25°C	15699 ohm.cm		08/10/2008	NF EN 27888
0	Potassium	0.7 mg/l		15/10/2008	NF T 90-019
C	Indice Phénol	<0.025 mg/l	x <= 0,100	13/10/2008	T 90-109
C	Cyanures totaux	<10,0 µg/l		14/10/2008	NF EN ISO 14403
C	Agents de surface anioniques	<0,10 mg SABM/l	x <= 0,10	10/10/2008	NF EN 903
		Analyses de radioactivité (analyses so	us traitées)		
	Activité Beta Résiduelle	0.04 Bq/L	,	17/10/2008	calcul
	Activité Alpha Globale	<0,02 Bq/L		17/10/2008	NF M 60-801
	Activité Beta Globale	0.06 Bq/L		17/10/2008	NF M 60-800
	Activité Potassium 40	0.02 Bq/L		13/10/2008	calcul
	Activité volumique Tritium	<1.00 Bq/L		21/10/2008	NF M 60-802-1
	Dose Totale Indicative	<8,10 mSv/an		16/10/2008	Calcul
		Mesures sur le terrain			
	Aspect (qualitatif)	Normal		06/10/2008	Méthode ILB
	Hydrogène sulfuré	Absence		06/10/2008	Méthode ILB
C	рН	6.20 Unités pH		06/10/2008	NF T 90-008
	Température de l'air	12.0 °C		06/10/2008	Méthode ILB
	Température de l'eau	8.5 °C	x <= 25,0	06/10/2008	Méthode ILB
		Analyses de traces inorganiqu	es		
C	Aluminium	0.012 mg/l		07/10/2008	NF EN ISO 11885
O	Baryum	<0.050 mg/l	x <= 1	06/10/2008	NF EN ISO 11885
$^{\circ}$	Chrome total	<0.010 mg/l	x <= 0,050	06/10/2008	NF EN ISO 11885
C	Cuivre	<0.010 mg/l		06/10/2008	NF EN ISO 11885
C	Fer	0.012 mg/l		06/10/2008	NF EN ISO 11885
C	Mercure	<0.0002 mg/l	x <= 0,0010	08/10/2008	NF EN 1483
C	Plomb	<0.005 mg/l		17/10/2008	NF EN ISO 17294-2
C	Zinc	<0.010 mg/l	x <= 5,000	06/10/2008	NF EN ISO 11885

Remarques et Conclusions

Remarque bactériologique: Echantillon conforme en ce qui concerne les paramètres analysés

Clermont-Ferrand, le 24/10/2008

Analyse validée par : GOUZOUX Laurent

Responsable de la diffusion : ALAMÉ Josette

Page 2 de 2

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

ET DE PHARMACIE CEDEX 01 - FRANCE - - 28, PLACE HENRI DUNANT TEL: 04 73 28 84 50 FAX: 04

DUNANT - B.P. 38 FAX: 04 73 28 84 55

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60. Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 124673

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR

(ear brute)

MELANGE DE CAPTAGE (3) DANS REGARD

Réception au laboratoire le 14 Septembre 2004 à 13h55

Prélèvement effectué le 14 Septembre 2004 à 10h00 par BASSO S., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	DETERMINATIONS	UTUTION TO THE	•		
		Résultat	Incert.	Limite de Qualité	Méthode
				<25.0	Méthode ILB
	Température de l'eau (°C)	5.0			Méthode ILB
	Température de l'air (°C)	Non Déterminé			
	-	Absence			Méthode ILB
	Hydrogène sulfuré	n pátaminá			NF T 90-008
рн à 20°C (pH à 20°C (Unités pH)	Non Déterminé			

ANALYSE PHYSICO-CHIMIQUE

		MUDITOR INTERIOR			
		Résultat	Incert.	Limite de Qualité	Méthode
		63.1			NF EN 27888
0	Conductivité à 25°C (µS/cm)				NF T 90-008
0	pH à 20°C (Unités pH)	5.90 L			NF T 90-008
0	pH après marbre (à 20°C) (Unités pH)	7.00			Flux continu
	Titre Alcalimétrique Complet (TAC) (°F)	1.9			
		4.9			Flux continu
@	T.A.C. après marbre (°F)	1.5			Calculé
	Titre Hydrotimétrique Total (THT) (°F)				NF EN ISO 7027
0	Turbidité (NTU)	<0.2			Flux continu
©	Titre Alcalimétrique (TA) (°F)	<0.1			NF EN ISO 11885
	Silice (mg SiO2/1)	22.20			
	Carbone Organique Total (mg C/l)	0.40			NF EN 1484
(C)	Carbone Organique Total (mg 02/3	1 <0.5		0.0 - 10.0	NF EN ISO 8467
0	Oxydabilité à chaud en milieu acide (mg O2/1	9.5			NF EN 25813
©	Oxygène dissous (mg O2/1)				NF T 90-011
	Anhydride carbonique libre (mg CO2/1)	26.6			

Clermont-Ferrand, le 27 Septembre 2004

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

7 OCT. 2004

ACCREDITATION N° 1-1112 PORTÉE COMMUNIQUÉE SUR DEMANDE Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

28, TEL: 04 73 28 84 50

PLACE HENRI DUNANT FAX: 04 73 28 84 55

Page 1 / 5

MÉDECINE ET DE PHARMACIE FACULTÉS CLERMONT-FERRAND CEDEX 01 - FRANCE -

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 124673

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR

MELANGE DE CAPTAGE (3) DANS REGARD

Réception au laboratoire le 14 Septembre 2004 à 13h55

14 Septembre 2004 à 10h00 par BASSO S., DDASS 63 Prélèvement effectué le

ANALYSE DES ANIONS

		Résultat	Incert.	Limite de Qualité	Méthode
		2.3			NF EN ISO 10304-1
0	Chlorures (mg/l)				NF EN ISO 13395
6	Nitrites (mg NO2/1)	<0.003			NF EN ISO 10304-1
0	Nitrates (mg NO3/1)	4.40		0.0 - 250.0	NF EN ISO 10304-1
©	Sulfates (mg/l)	3.6		0.0 - 230.0	
	Hydrogénocarbonates (HCO3) (mg/l)	23.2			Calculé
	Carbonates (CO3) (mg/l)	0.00			Calculé
1		<0.10			NF EN ISO 10304-1
©	Phosphore total (mg P205/1)	<0.05			NF EN ISO 10304-1
0	Fluorures (mg/1)	10.03			
		ANALYSE DES	CATIONS		
1			Incert.	Limite de Qualité	Méthode
		Résultat	Incerc.	0.00 - 4.00	NF EN ISO 11732
0	Ammonium (mg NH4/1)	<0.05		0.00 - 4.00	NF EN ISO 7980
6	Calcium (mg/l)	4.20			
6	Magnésium (mg/l)	1.00			NF EN ISO 7980
	-	5.7			NF T 90-019
©	Sodium (mg/l)	0.9			NF T 90-019
0	Potassium (mg/l)	0.3			

Clermont-Ferrand, le 27 Septembre 2004

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

7 OCT. 2004

ACCREDITATION N° 1-1112 PORTÉE COMMUNIQUÉE SUR DEMANDE

Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet. 28. PLACE HENRI DUNANT PHARMACIE MÉDECINE ET FACULTÉS DE TEL: 04 73 28 84 50 FAX: 04 73 28 84 55 CEDEX 01 - FRANCE CLERMONT-FERRAND

RAPPORT D'ANALYSE (SUITE)

-3 500 10g

Méthode

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 124673

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR

MELANGE DE CAPTAGE (3) DANS REGARD

Réception au laboratoire le 14 Septembre 2004 à 13h55

14 Septembre 2004 à 10h00 par BASSO S., DDASS 63 Prélèvement effectué le

ANALYSES BACTERIOLOGIQUES

Limite de Qualité NF EN ISO 9308-1 Non Déterminé Coliformes Totaux (UFC/100 ml) NF EN ISO 9308-1 0 Escherichia coli (UFC/100 ml) NF EN ISO 7899 0 - 100003 2 Entérocoques (UFC/100 ml) NF EN 26461-2 Spore Bactérie Sulfito-réductrice (UFC/100 Non Déterminé NF EN ISO 6222 Non Déterminé Dénombrement à 37° (UFC/ml) NF EN ISO 6222 Non Déterminé Dénombrement à 22° (UFC/ml) ANALYSES DES METAUX Limite de Qualité Méthode Résultat NF T 90-119 <0.005 Antimoine (mg/1) NF T 90-119 0.000 - 0.100 <0.005 Arsenic (mg/l) NF EN TSO 11885 <0.050 Bore (mg/l) 0.0000 - 0.0005 NF EN ISO 5961 <0.0005 Cadmium (mg/1) NF EN ISO 11885 0.025 ---Manganèse (mg/l) NF EN ISO 11885 <0.005 Nickel (mg/l) NF T 90-119 0.000 - 0.010 <0.005 Sélénium (mg/l) NF EN ISO 11885

Remarques et conclusions

<0.005

Bactériologie : Contamination résiduelle.

Clermont-Ferrand, le 27 Septembre 2004

1-1112 RTÉE COMMUNIQUÉE

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

cofrac

Fer dissous (mg/l)

ACCREDITATION

Remarques concernant ce rapport :

Seuls les paramètres marquès du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

PLACE HENRI DUNANT 28. PHARMACIE DE ET FACULTÉS MÉDECINE FAX: 04 73 28 84 55 TEL! 04 73 28 84 50 CEDEX 01 - FRANCE -CLERMONT-FERRAND

Page 3 / 5

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 124673

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR

MELANGE DE CAPTAGE (3) DANS REGARD

Réception au laboratoire le 14 Septembre 2004 à 13h55

14 Septembre 2004 à 10h00 par BASSO S., DDASS 63 Prélèvement effectué le

ANALYSES CHROMATOGRAPHIQUES

		711(11111111111111111111111111111111111		Limite de Qualité	Méthode
		Résultat	Incert.	Dimite de Sagires	110 0110 00
1	Phényl-urées				NF EN ISO 11369
*	Diuron (ug/l)	<0.1			NF EN ISO 11369
*	Isoproturon (ug/l)	<0.1			NF EN ISO 11369
*	Linuron (ug/l)	<0.1			
	Pesticides organophosphorés				NF EN ISO 10695
*	Dimethoate $(\mu g/1)$	<0.01			NF EN ISO 10695
*	EPN (μg/1)	<0.01			NF EN ISO 10695
*	Malathion $(\mu g/l)$	<0.01			NF EN ISO 10695
*	Monocrotophos (µg/1)	<0.01			NF EN ISO 10695
*	Parathion (µg/l)	<0.01			NF EN ISO 10695
*	Sulfotepp (µg/l)	<0.01			NF EN ISO 10695
*	TEPP (μg/l)	<0.01			Calculé
	Pesticides totaux (µg/l)	<0.01			
9	Pesticides Organoazotés				NF EN ISO 10695
*	Atrazine (µg/l)	<0.01			NF EN ISO 10695
*	Simazine (μg/l)	<0.01			NF EN ISO 10695
*	Propazine (µg/l)	<0.01			NF EN ISO 10695
*	Déséthylatrazine (µg/l)	<0.01			NF EN ISO 10695
×	Désisopropylatrazine (μg/l)	<0.01			NF EN ISO 10695
4	Cyanazine (μg/l)	<0.01			NF EN ISO 10695
4	* Terbuthylazine (µg/l)	<0.01	10		NF EN ISO 10695
1 4	(,)	<0.01			
6	Solvants Halogénés Volatils	F:			Selon EPA 524-2
-	* Trichloroéthylène (μg/l)	<0.01			Selon EPA 524-2
9	* Tétrachloroéthylène (μ g/l)	<0.01			Selon EPA 524-2
	* 1,2-Dichloroéthane (μg/l)	<0.05			Selon EPA 524-2
]	 Total tetra+trichloroéthylène (µg/l) 	<0.02			NF EN ISO 9377-2
	Indice Hydrocarbures (mg/l)	<0.10			112 21. 250 307.

Clermont-Ferrand, le 27 Septembre 2004

ACCREDITATION

N° 1-1112 PORTÉE COMMUNIQUÉE

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

Sign Cap

₹ 7 OCT. 2004

Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

PLACE HENRI DUNANT 28, PHARMACIE MÉDECINE ET DE DE FACULTES TEL: 04 73 28 84 50 FAX: 04 73 28 84 55 CEDEX 01 - FRANCE CLERMONT-FERRAND

Page 4 / 5

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60. Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 124673

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR

MELANGE DE CAPTAGE (3) DANS REGARD

Réception au laboratoire le 14 Septembre 2004 à 13h55

Prélèvement effectué le

14 Septembre 2004 à 10h00 par BASSO S., DDASS 63

ANNEXE - BILAN IONIQUE

	mg/l	meq/1 0.06
Chlorures	<0.003	<0.01
Nitrites	4.40	0.07
Nitrates	3.6	0.07
Sulfates		0.38
Hydrogénocarbonates (HCO3)	23.2	<0.01
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	<0.05	
TOTAL ANIONS		0.58
	mg/l	meq/1
Ammonium	<0.05	0.21
Calcium	4.20	
Magnésium	1.00	0.08
Sodium	5.7	0.25
Potassium	0.9	0.02
TOTAL CATIONS		0.56

Clermont-Ferrand, le 27 Septembre 2004

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

ACCREDITATION PORTÉE COMMUNIQUÉE

Remarques concernant ce rapport :

Seuls les paramètres marques du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet. 28. PLACE HENRI DUNANT --MÉDECINE ET DE PHARMACIE DE FAX: 04 73 28 84 55 TEL: 04 73 28 84 50 CEDEX 01 - FRANCE -CLERMONT-FERRAND

ANALYSE DE TYPE B3 C1

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72022

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR -DRAIN 1

DRAIN 1

Réception au laboratoire le 24 Octobre 2000 à 17h02

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat

Limite de Qualité Méthode

Aspect (qualitatif)

Norma l

Chlore résiduel total (mg/l)

Non Déterminé

Chlore résiduel libre (mg/l)

Non Déterminé

Bioxyde de chlore (mg C12/1)

Non Déterminé

Chlorite (µg/l)

Non Déterminé

DETERMINATIONS PHYSICO-CHIMIQUES

Résultat 54.7 6.20

Limite de Qualité

Limite de Qualité

Méthode EN 27888

pH à 20°C (Unités pH) Turbidité (NTU)

NF T 9000

Conductivité à 25°C (µS/cm)

<0.2

Dácultat

EN 27027

Méthode

DETERMINATIONS BACTERIOLOGIQUES

	Kesuitat	
Coliformes Totaux (UFC/100 ml)	0	
Coliformes Thermotolérants (UFC/100 ml)	0	
Streptocoques Fécaux (UFC/100 ml)	0	
Spore bactérie anaérobie sulfito réduct. (UF	C/20ml) O	
Dénombrement à 37° (UFC/ml)	0	
Dénombrement à 22° (UFC/ml)	0	
Pseudomonas aeruginosa (UFC/100 ml)	Non Déterminé	

0 - 50000 NF T 9041 0 - 20000NF T 9041 <10000 NF T 9041

> NF T 9041 NF T 9040

NF T 9040 ILB Métho

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Physico-chimie : Eau trés faiblement minéralisée.

Clermont-Ferrand, le 16 Novembre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusio

ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 287 PLACE HENRI DUNANT - B.P. 38 43001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

ANALYSE DE TYPE B3 C1

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72023

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR - DRAIN 2

DRAIN 2

Réception au laboratoire le 24 Octobre 2000 à 17h02

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat

Norma 1

Limite de Qualité Méthode

Aspect (qualitatif) Chlore résiduel total (mg/l)

Non Déterminé Non Déterminé

Chlore résiduel libre (mg/l) Bioxyde de chlore (mg C12/1)

Non Déterminé

Chlorite (µg/1)

Non Déterminé

DETERMINATIONS PHYSICO-CHIMIQUES

	Résultat
Conductivité à 25°C (μS/cm)	49.7
pH ā 20°C (Unitës pH)	6.00
Turbidité (NTU)	<0.2

Limite de Qualité Méthode EN 27888 NF T 900

EN 27027

DETERMINATIONS BACTERIOLOGIOUES

	Résultat	Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	2	0 - 50000	NF T 904.
Coliformes Thermotolérants (UFC/100 ml)	2	0 - 20000	NF T 904.
Streptocoques Fécaux (UFC/100 ml)	= 0	<10000	NF T 904.
Spore bactérie anaérobie sulfito réduct. (UFC/20m	nrI) 0		NF T 904.
Dénombrement à 37° (UFC/ml)	1		NF T 9040
Dénombrement à 22° (UFC/m1)	10		NF T 904(
Pseudomonas aeruginosa (UFC/100 ml)	Non Déterminé	聖.	ILB Métho

Remarques et conclusions

Bactériologie: Echantillon contaminé. Eau non potable. Physico-chimie : Eau extrêmement peu minéralisée.

Clermont-Ferrand, le 16 Novembre 2000

Analyse validée par :

ALAME Josette

Le Responsable de la diffusio

ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

ANALYSE DE TYPE B3 C1

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72024

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR - DRAIN 3

DRAIN 3

Réception au laboratoire le 24 Octobre 2000 à 17h02

Prélèvement effectué le

24 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat

Limite de Qualité

Méthode

Aspect (qualitatif)

Chlore résiduel total (mg/l)

Chlore résiduel libre (mg/l) Bioxyde de chlore (mg C12/1)

Chlorite (µg/l)

Norma I

Non Déterminé

Non Déterminé

Non Déterminé Non Déterminé

DETERMINATIONS PHYSICO-CHIMIQUES

Résultat Conductivité à 25°C (µS/cm) 55.5 pH à 20°C (Unités pH) 6.10

Limite de Qualité

Méthode EN 27888

Turbidité (NTV) < 0.2

NF T 900C EN 27027

DETERMINATIONS BACTERIOLOGIQUES

	Résultat
Coliformes Totaux (UFC/100 ml)	0
Coliformes Thermotolérants (UFC/100 ml)	0
Streptocoques Fécaux (UFC/100 ml)	0
Spore bactérie anaérobie sulfito réduct. (UFC/20ml)	0
Dénombrement à 37° (UFC/ml)	0
Dénombrement à 22° (UFC/ml)	15

0 - 500000 - 20000 <10000

Limite de Qualité

NF T 9041 NF T 9041

23.6***

To 16. 14 ાં, વાયર 7 (208)

2 100-11 10 10

Méthode

NF T 9041

NF T 9041

NF T 9040 NF T 9040 ILB Métho

Remarques et conclusions

Non Déterminé

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.. 7

Physico-chimie: Eau trés faiblement minéralisée.

Clermont-Ferrand, le 13 Novembre 2000

Pseudomonas aeruginosa (UFC/100 ml)

Analyse validée par : ALAME Josette

Le Responsable de la diffusion

ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38' 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

1 95 4 3 1 64(4)

ANALYSE OFFICIELLE DE TYPE RS (C3C4abcd)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72025

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR

BAC

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le

24 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4a)

DETRIGITMATIONS	LHIDICO-CHIHIODES	(rybe	C4a)	
	Résultat	,	Limite de Qualité	Méthode
	<1.00			EN 25663
	<0.01		0.00 - 1.00	NF T 90114
s (mg SABM/1)	<0.10			EN 903
	<0.025		0.000 - 0.100	NF T 90109
DETERMINATIONS	PHYSICO-CHIMIQUES	(type	C4b)	
	Résultat		Limite de Qualité	Méthode
	<0.0005		0.0000 - 0.0050	NF T 90119
	<0.005		0.000 - 0.050	NF T 90119
iques Aromatiques en μg/	(1)			
	<0.001			NFT90115
g/1)	<0.010			NFT90115
(μg/1)	<0.005			NFT90115
	<0.001			NFT90115
)	<0.020			NFT90115
g/l)	<0.020			NFT90115
	0.000		0.000 ~ 1.000	NFT90115
	s (mg SABM/l) DETERMINATIONS iques Aromatiques en µg/ g/l) (µg/l)	Résultat	Résultat <1.00 <0.01 s (mg SABM/l) <0.10 <0.025 DETERMINATIONS PHYSICO-CHIMIQUES (type Résultat <0.0005 <0.005 iques Aromatiques en µg/l) <0.001 g/l) <0.010 (µg/l) <0.005 <0.005 0.001) <0.020 g/l) <0.020	<pre></pre>

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno Le Responsable de la diffusion :

CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55 ANALYSE OFFICIELLE DE TYPE RS (C3C4abcd) (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72025

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR

BAC

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIOUES (type C4c)

•	DETERMINATIONS LUISICO-CUIMIÕGES	(rybe	C4C)	
	Résultat		Limite de Qualité	Méthode
Arsenic (mg/l)	<0.005	80	0.000 - 0.100	NF T 90119
Chrome total (mg/l)	<0.002		0.000 - 0.050	NF T 90119
Mercure (mg/l)	<0.0002		0.0000 - 0.0010	ILB Method
Sélénium (mg/l)	<0.005		0.000 - 0.010	NF T 90119
Cyanures totaux (mg/l)	<0.01		0.000 - 0.050	NF T 90107
Solvants Halogénés Volatils				
* Chloroforme (μg/l)	<0.01			ILB Méthod
* 1,1,1-Trichloroéthane (μg/l	(0.01			ILB Méthod
* Tétrachlorure de carbone (μ	g/l) < 0.01			ILB Méthod
* Trichloroéthylène (μg/l)	<0.01			ILB Méthod
* Bromodichlorométhane (μg/l)	<0.01			ILB Méthod
* cis-1,3-Dichloropropène (μg,	/l) < 0.01			ILB Méthod
* trans-1,3-Dichloropropène (µg/l) <0.01			ILB Méthod
* 1,1,2-Trichloroéthane (μg/l)	<0.05			ILB Méthod
* Tétrachloroéthylène (μg/l)	<0.01			ILB Méthod
* Chlorodibromométhane (μg/l)	<0.01			ILB Méthod
* Chlorobenzène (μg/l)	<1			ILB Méthod
* Bromoforme (μg/l)	<0.01			ILB Méthod
* 1,1,2,2-Tétrachloroéthane (μg/l) <0.01			ILB Méthod
* 1,3-Dichlorobenzène (μg/l)	<0.05			ILB Méthod
* 1,4-Dichlorobenzène (μg/l)	<0.05			ILB Méthod
* 1,2-Dichlorobenzène (μg/l)	<0.05			ILB Méthod
Pesticides Organoazotés (typ	pe triazine)			
* Atrazine (μg/l)	<0.01			
* Simazine (μg/l)	<0.01			
* Propazine (μg/l)	<0.01			
* Déséthylatrazine (μg/l)	<0.01			
* Désisopropylatrazine (μg/l)	<0.01			

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL: (33) 04 73 28 84 50 - FAX: (33) 04 73 28 84 55 ANALYSE OFFICIELLE DE TYPE RS (C3C4abcd) (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS

SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Adresse de facturation :

63000 CLERMONT FERRAND

Rf: 72025

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR

BAC

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c) (SUITE)

		DBIBIGIIIIIIII	THIDICO-CHIMIQUES	(cybe	(40)	(SOTIE)	
			Résultat			Limite de Qualité	Méthode
	Pesticides organochl	lorés					
1	* HCB (μg/1)		<0.01				
,	* alpha HCH (μg/l)		<0.02				
,	* Lindane (μg/l)		<0.02				
	* Heptachlore (μg/l)		<0.02				
i	* Aldrin (μg/l)		<0.02				
,	* Heptachlore epoxide	(µg/1)	<0.02				
,	* Endosulfan (μg/1)		<0.02				
;	* Dieldrin (μg/l)		<0.02				
,	* Endrin (μg/1)		<0.02				
,	* DDT pp' (μg/l)		<0.02				
7	* Β HCH (μg/l)		<0.02				
,	* DDE pp' (μg/l)		<0.02				
7	* DDD op' (μg/l)		<0.02				
1	* DDD pp' (μg/l)		<0.02				
	Pesticides organopho	sphorés					
1	* Dimethoate (μg/1)		<0.01				
1	* EPN (μg/1)		<0.01				
١	* Malathion (μg/l)		<0.01				
1	* Monocrotophos (μg/1)		<0.01				
3	* Parathion (μg/l)		<0.01				
٦	* Sulfotepp (μg/l)		<0.01				
,	* TEPP (μg/1)		<0.01				

DETERMINATIONS PHYSICO-CHIMIQUES (type C4d)

	Résultat	Limite de Qualité	Méthode
Demande Biochimique en Oxygène - DBO/5 (mg 02/1)	<3.0		NF T 90103
Demande Chimique en Oxygène (mg 02/1)	<30		NF T 90101
Bore (mg/l)	<0.050		ILB Méthod
Baryum (mg/l)	<0.050	0.000 - 1.000	ILB Méthod
Substances extractibles au chloroforme (mg/l)	<0.10		ILB Méthod
Matières en suspension (mg/l)	<1.0		NF EN 872

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion :

CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55 ANALYSE OFFICIELLE DE TYPE RS (C3C4abcd) (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72025

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR

BAC

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Limite de Qualité	Méthode
Odeur (qualitatif)	Sans odeur		
Saveur (qualitatif)	Sans saveur		
Température de l'eau (°C)	Non Déterminé	0.0 - 25.0	NF T 90100
Température de l'air (°C)	Non Déterminé		NF T 90100
Chlore résiduel total (mg/l)	Non Déterminé		
Chlore résiduel libre (mg/l)	Non Déterminé		
Bioxyde de chlore (mg C12/1)	Non Déterminé		
Chlorite (µg/l)	Non Déterminé		
Hydrogène sulfuré	Absence		ILB Méthod
	ANALYSE DES ANIONS		
	Résultat	Limite de Qualité	Méthode

Chlorures (mg/l)	2.4		Std Method
Nitrites (mg NO2/1)	<0.050		NF T 90012
Nitrates (mg NO3/1)	5.70	0.0 - 50.0	NF T 90012
Sulfates (mg/1)	4.0	0.0 - 250.0	ISO 10304
Hydrogénocarbonates (HCO3) (mg/1)	19.5		Calculé
Carbonates (CO3) (mg/1)	0.00		Calculé
Phosphore total (mg P205/1)	0.07		NF T 90023
Fluorures (mg/l)	<0.05		ISO 10359

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28 PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

ANALYSE OFFICIELLE DE TYPE RS (C3C4abcd) (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72025

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR

BAC

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANALYSE DES CATIONS

	Résultat	Limite de Qualité	Méthode
Ammonium (mg NH4/1)	<0.10	0.00 - 4.00	ISO 7150-2
Calcium (mg/l)	4.20		Std Method
Magnésium (mg/l)	1.00		Std Method
Sodium (mg/1)	5.5		NF T 90019
Potassium (mg/l)	0.7		NF T 90019
Manganèse (mg/l)	<0.005		NF T 90119
Fer (mg/l)	0.005		Std Method
Zinc (mg/l)	<0.030	0.000 - 5.000	NF T 90112
Aluminium (mg/l)	0.006		NF T 90119
Cuivre (mg/l)	<0.002		NF T 90119

	ANALYSE PHYSICO-CHIMIQUE		
	Résultat	Limite de Qualité	Méthode
Conductivité à 25°C (μS/cm)	53.9		EN 27888
pH à 20°C (Unités pH)	6.10		NF T 90008
pH après marbre (à 20°C) (Unités pH)	7.20		
Titre Alcalimétrique Complet (TAC) (°F)	1.6		ILB Méthod
T.A.C. après marbre (°F)	5.8		ILB Méthod
Titre Hydrotimétrique Total (THT) (°F)	1.5		Calculé
Titre Hydrotimétrique Permanent (THP) (°F)	-		Calculé
Silice (mg SiO2/1)	26.70		ILB Method
Oxygène dissous (mg 02/1)	9.4		EN 25813
Couleur (quantitatif) (Hazen)	<5		ILB Méthod
Résidu sec à 175-185°C (mg/l)	59.0		NF T 90029
Oxydabilité à chaud en milieu acide (mg 02/	1) <0.5		ISO 8467
Turbidité (NTU)	<0.2	ř	EN 27027
Titre Alcalimétrique (TA) (°F)	<0.1		ILB Méthod
Anhydride carbonique libre (mg CO2/1)	27.8		NF T 90011

Remarques et conclusions

Physico-chimie: Eau trés faiblement minéralisée.

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par :

CLEMENT Bruno

Le Responsable de la diffusion CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

ANALYSE OFFICIELLE DE TYPE RS (C3C4abcd) (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72025

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LE LAVOIR

BAC

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR N, DDASS 63

ANNEXE - BILAN IONIQUE

	mg/1	meq/1
Chlorures	2.4	0.07
Nitrites	<0.050	<0.01
Nitrates	5.70	0.09
Sulfates	4.0	0.08
Hydrogénocarbonates (HCO3)	19.5	0.32
Carbonates (CO3)	0.00	< 0.01
Phosphore total	0.07	_
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.56
	mg/l	meq/1
Ammonium	<0.10	<0.01
Calcium	4.20	0.21
Magnésium	1.00	0.08
Sodium	5.5	0.24
Potassium	0.7	0.02
Manganèse	<0.005	< 0.01
Fer	0.005	<0.01
Zinc	<0.030	<0.01
Aluminium	0.006	<0.01
Cuivre	<0.002	<0.01
TOTAL CATIONS		0.55

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

LA MARUE

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME

Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND SIAEP HAUT-LIVRADOIS 63220 ARLANC

Réf: 234935

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGE (5) - Prélèvement dans bâche par immersion

Réception au laboratoire :

07/10/2008 14:39:00

Prélèvement effectué le :

07/10/2008 11:55:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

-	Analyse	Résultat				Limite de Qualité	Réalisé le	Méthode
			Analys	es bactério	logiques			
©	Coliformes Totaux	0 UFC/100 ml					07/10/2008	NF EN ISO 9308-1
©	Escherichia coli	0 UFC/100 ml				x <= 20000	07/10/2008	NF EN ISO 9308-1
C	Entérocoques	0 UFC/100 ml				x <= 10000	07/10/2008	NF EN ISO 7899-2
©	Spore Bactérie Sulfito-réductrice	0 UFC/100 ml					07/10/2008	NF EN 26461-2
C	Dénombrement à 22°	2 UFC/ml					07/10/2008	NF EN ISO 6222
C	Dénombrement à 37°	0 UFC/ml					07/10/2008	NF EN ISO 6222
			Analyses	des traces	organiqu	es		
O	Indice Hydrocarbures	<0.1 mg/l				x <= 1,00	22/10/2008	NF EN ISO 9377-2
ŀ	lydrocarbures Polycycliques Ar	omatiques					07/10/2008	NF EN ISO 17993
	Fluoranthène	<0.001 µg/l						
	Benzo(b)fluoranthène	<0.010 µg/l						
	Benzo(k)fluoranthène	<0.005 µg/l						
	Benzo(a)pyrène	<0.001 µg/l						
	Benzo(ghi)pérylène	<0.020 µg/l						
	Indeno(1,2,3-cd)pyrène	<0.020 µg/l						
	Total des 6 subsances	<0.020 µg/l				x <= 1,000		
0	Benzène	<0.5 µg/l					14/10/2008	NF ISO 11423-1
© S	olvants Halogénés Volatils						14/10/2008	Méthode ILB
-	Trichloroéthylène	<0.50 µg/l						
-	Tétrachloroéthylène	<0.50 µg/l						
-	1,2-Dichloroéthane	<0.50 µg/l						
-	Total tetra+trichloroéthylène	<0.50 µg/l						
©	Chlorure de vinyle	<0.30 µg/l					14/10/2008	Méthode ILB

Clermont-Ferrand, le 04/11/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 1 de 2

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DU 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50 FA

DUNANT - B.P. 38 FAX: 04 73 28 84 55

(Suite.)

Réf: 234935

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGE (5) - Prélèvement dans bâche par immersion

Réception au laboratoire :

Prélèvement effectué le :

07/10/2008 14:39:00

07/10/2008 11:55:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

	Analyse	Résultat	Limite de Qualité	Réalisé le	Méthode			
		Analyses	physico-chimiques					
C	pH à 20°C	5.85 Unités pH		07/10/2008	NF T 90-008			
C	Conductivité à 25°C	52.2 μS/cm		07/10/2008	NF EN 27888			
(C)	Résistivité à 25°C	19157 ohm.cm		08/10/2008	NF EN 27888			
(C)	Potassium	0.5 mg/l		15/10/2008	NF T 90-019			
C	Indice Phénol	<0.025 mg/l	x <= 0,100	15/10/2008	T 90-109			
C	Cyanures totaux	<10,0 µg/l		14/10/2008	NF EN ISO 14403			
(C)	Agents de surface anioniques	<0,10 mg SABM/l	x <= 0,10	10/10/2008	NF EN 903			
	Analyses de radioactivité (analyses sous traitées)							
	Activité Beta Résiduelle	0.05 Bq/L	,	17/10/2008	calcul			
	Activité Alpha Globale	<0,02 Bq/L		17/10/2008	NF M 60-801			
	Activité Beta Globale	0.06 Bq/L		17/10/2008	NF M 60-800			
	Activité Potassium 40	0.01 Bq/L		13/10/2008	calcul			
	Activité volumique Tritium	<1.00 Bq/L		21/10/2008	NF M 60-802-1			
	Dose Totale Indicative	<8,10 mSv/an		16/10/2008	Calcul			
		Mesure	es sur le terrain					
	Aspect (qualitatif)	Normal		07/10/2008	Méthode ILB			
	Hydrogène sulfuré	Absence		07/10/2008	Méthode ILB			
(C)	рН	5.70 Unités pH		07/10/2008	NF T 90-008			
	Température de l'air	10.5 °C		07/10/2008	Méthode ILB			
	Température de l'eau	8.0 °C	x <= 25,0	07/10/2008	Méthode ILB			
		Analyses de	traces inorganiques					
(C)	Aluminium	0.012 mg/l		07/10/2008	NF EN ISO 11885			
(C)	Baryum	<0.050 mg/l	x <= 1	07/10/2008	NF EN ISO 11885			
(C)	Chrome total	<0.010 mg/l	x <= 0,050	07/10/2008	NF EN ISO 11885			
(C)	Cuivre	<0.010 mg/l		07/10/2008	NF EN ISO 11885			
O	Fer	<0.010 mg/l		07/10/2008	NF EN ISO 11885			
C	Mercure	<0.0002 mg/l	x <= 0,0010	08/10/2008	NF EN 1483			
C	Plomb	<0.005 mg/l		17/10/2008	NF EN ISO 17294-2			
C	Zinc	<0.010 mg/l	x <= 5,000	07/10/2008	NF EN ISO 11885			

Clermont-Ferrand, le 04/11/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 2 de 2

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

ET DE PHARMACIE CEDEX 01 - FRANCE - - 28, PLACE HENRI DUNANT TEL: 04 73 28 84 50 FAX: 04

DUNANT - B.P. 38 FAX: 04 73 28 84 55

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1 Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 118860

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGE (5)

Réception au laboratoire le 10 Juin 2004 à 15h42

Prélèvement effectué le

10 Juin 2004 à 13h00 par VOURC'H K., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Incert.	Limite de Qualité	Méthode
Température de l'eau (°C)	6.5		<25.0	Méthode ILB
Température de l'air (°C)	Non Déterminé			Méthode ILB
Hydrogène sulfuré	Absence			Méthode ILB
pH à 20°C (Unités pH)	Non Déterminé			NF T 90-008

ANALYSE PHYSICO-CHIMIQUE

		Résultat	-	Incert.	Limite de Qualité	Méthode
9	Conductivité à 25°C (µS/cm)	49.9				NF EN 27888
Ð	pH à 20°C (Unités pH)	5.50				NF T 90-008
ð	pH après marbre (à 20°C) (Unités pH)	6.40				NF T 90-008
Ö	Titre Alcalimétrique Complet (TAC) (°F)	1.2			9	Flux continu
ð	T.A.C. après marbre (°F)	4.2				Flux continu
	Titre Hydrotimétrique Total (THT) (°F)	1.0				Calculé
Þ	Turbidité (NTU)	<0.2				NF EN ISO 7027
ð	Titre Alcalimétrique (TA) (°F)	<0.1				Flux continu
	Silice (mg SiO2/1)	21.30				NF EN ISO 11885
٥	Carbone Organique Total (mg C/l)	0.70				NF EN 1484
Þ	Oxygène dissous (mg O2/1)	10.7			10	NF EN 25813
	Anhydride carbonique libre (mg CO2/1)	25.5				NF T 90-011

Clermont-Ferrand, le 23 Juin 2004

Analyse validée par : ALAME Josette Le Responsable de la diffusion : ALAME Josette

cofrac

ACCREDITATION
N° 1-1112
PORTÉE COMMUNIQUÉE
SUR DEMANDE

Remaraues concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 630011 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

Page 1 / 5

.

Demandeur de l'analyse :
DDASS DU PUY DE DOME
Service Santé Environnement
60, Avenue de l'Union Soviétique
63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 118860

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGE (5)

Réception au laboratoire le 10 Juin 2004 à 15h42

Prélèvement effectué le

Ammonium (mg NH4/1)
Calcium (mg/1)
Magnésium (mg/1)
Sodium (mg/1)
Potassium (mg/1)

10 Juin 2004 à 13h00 par VOURC'H K., DDASS 63

ANALYSE DES ANIONS

	Résultat	Incert.	Limite de Qualité	Méthode
Chlorures (mg/l)	1.9			NF EN ISO 10304-1
Nitrites (mg NO2/1)	<0.003			NF EN ISO 13395
	3.30			NF EN ISO 10304-1
Nitrates (mg NO3/1)	4.7		0.0 - 250.0	NF EN ISO 10304-1
Sulfates (mg/l)	14.6			Calculé
Hydrogénocarbonates (HCO3) (mg/l)				Calculé
Carbonates (CO3) (mg/1)	0.00			NF EN ISO 10304-1
Phosphore total (mg P205/1)	<0.10			NF EN ISO 10304-1
Fluorures (mg/l)	<0.05			MI DM 150 1030: 1

ANALYSE DES CATIONS

Résultat	Incert.	Limite de Qualité	Méthode
<0.05		0.00 - 4.00	NF EN ISO 11732
2.80			NF EN ISO 7980
0.80	.22		NF EN ISO 7980
4.8			NF T 90-019
0.5			NF T 90-019

Clermont-Ferrand, le 23 Juin 2004

Analyse validée par : ALAME Josette

Le Responsable de la diffusion :

Cofrac

ACCREDITATION
N° 1-1112
PORTÉE COMMUNIQUÉE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

Page 2 / 5

TATE OF

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1 Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 118860

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGE (5)

Réception au laboratoire le 10 Juin 2004 à 15h42

Prélèvement effectué le

10 Juin 2004 à 13h00 par VOURC'H K., DDASS 63

ANALYSES BACTERIOLOGIQUES

		-		
	Résultat	Incert.	Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	Non Déterminé			NF EN ISO 9308-1
Escherichia coli (UFC/100 ml)	0			NF EN ISO 9308-1
Entérocoques (UFC/100 ml)	0		0 - 10000	NF EN ISO 7899
Spore Bactérie Sulfito-réductrice (UFC/100	Non Déterminé			NF EN 26461-2
ml)				
Dénombrement à 37° (UFC/ml)	Non Déterminé			NF EN ISO 6222
Dénombrement à 22° (UFC/ml)	Non Déterminé			NF EN ISO 6222
			4	
	ANALYSES DES MI	ETAUX		
	Résultat	Incert.	Limite de Qualité	Méthode
Antimoine (mg/l)	<0.005			NF T 90-119
Arsenic (mg/l)	<0.005		0.000 - 0.100	NF T 90-119
Bore (mg/l)	<0.050			NF EN ISO 11885
Cadmium (mg/l)	<0.0005		0.0000 - 0.0005	NF EN ISO 5961
Manganèse (mg/l)	<0.005			NF EN ISO 11885
Nickel (mg/l)	<0.005			NF EN ISO 11885
Sélénium (mg/l)	<0.005		0.000 - 0.010	NF T 90-119
Fer dissous (mg/l)	<0.005		A ₁₀	NF EN ISQ 11885

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne les paramètres analysés.

Clermont-Ferrand, le 23 Juin 2004

Analyse validée par : ALAME Josette Le Responsable de la diffusion : ALAME Josette

cofrac

ACCREDITATION

N° 1-1112

PORTÉE COMMUNIQUÉE
SUR DEMANDE

Remarques concernant ce rapport :

Page 3 / 5

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 53001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1 Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 118860

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGE (5)

Réception au laboratoire le 10 Juin 2004 à 15h42

Prélèvement effectué le 10 Juin 2004 à 13h00 par VOURC'H K., DDASS 63

ANALYSES CHROMATOGRAPHIQUES

	F)	Résultat	Incert.	Limite de Qualité	Méthode
	Pesticides Organoazotés				
:	Atrazine (μ g/1)	<0.01			NF EN ISO 10695
,	Simazine (μ g/1)	<0.01			NF EN ISO 10695
r	Propazine (µg/l)	<0.01			NF EN ISO 10695
1	Déséthylatrazine (µg/l)	<0.01			NF EN ISO 10695
:	Désisopropylatrazine (µg/l)	<0.01			NF EN ISO 10695
12	Cyanazine (µg/l)	<0.01			NF EN ISO 10695
t	Terbuthylazine (µg/1)	<0.01			NF EN ISO 10695
50	Terbuméton (µg/1)	<0.01			NF EN ISO 10695
	Phényl-urées				-
ŧ	Diuron (ug/1)	<0.1		30	NF EN ISO 11369
r	Isoproturon (ug/l)	<0.1			NF EN ISO 11369
ŧ	Linuron (ug/l)	<0.1			NF EN ISO 11369
	Pesticides organophosphorés				
100	Dimethoate (µg/1)	<0.01			NF EN ISO 10695
10	EPN (µg/1)	<0.01			NF EN ISO 10695
r	Malathion (µg/l)	<0.01			NF EN ISO 10695
\mathcal{G}^{\pm}	Monocrotophos (µg/1)	<0.01			NF EN ISO 10695
r)i	Parathion (µg/l)	<0.01			NF EN ISO 10695
10	Sulfotepp (µg/l)	<0.01			NF EN ISO 10695
11	TEPP (µg/1)	<0.01			NF EN ISO 10695
	Pesticides totaux (µg/l)	<0.01			Calculé
	Solvants Halogénés Volatils				
5,	Trichloroéthylène (μ g/1)	<0.01			Selon EPA 524-2
	Tétrachloroéthylène (µg/l)	<0.01			Selon EPA 524-2
4	1,2-Dichloroéthane (μ g/1)	<0.05		3	Selon EPA 524-2
	Total tetra+trichloroéthylène (µg/l)	<0.02		2	Selon EPA 524-2
	Indice Hydrocarbures (mg/l)	<0.10			NF EN ISO 9377-2

Clermont-Ferrand, le 23 Juin 2004

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

cofrac

ACCREDITATION

N° 1-1112

PORTÉE COMMUNIQUÉE

SUR DEMANDE

Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE PHARMACIE – 28, PLACE HENRI DUNANT – B.P. 38 63001 CLERMONT-FERRAND CEDEX 01 – FRANCE – TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

Page 4 / 5

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 118860

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGE (5)

Réception au laboratoire le 10 Juin 2004 à 15h42

Prélèvement effectué le

10 Juin 2004 à 13h00 par VOURC'H K., DDASS 63

ANNEXE - BILAN IONIQUE

	mg/l	meq/l
Chlorures	1.9	0.05
Nitrites	<0.003	<0.01
Nitrates	3.30	0.05
Sulfates	4.7	0.10
Hydrogénocarbonates (HCO3)	14.6	0.24
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.44
	mg/l	meq/l
Ammonium	<0.05	<0.01
Calcium	2.80	0.14
Magnésium	0.80	0.07
Sodium	4.8	0.21
Potassium	0.5	0.01
TOTAL CATIONS	2	0.43

Clermont-Ferrand, le 23 Juin 2004

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

ACCREDITATION N* 1-1112 PORTÉE COMMUNIQUÉE SUR DEMANDE

Remaraues concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

DE 28, PLACE HENRI DUNANT B.P. 38 MÉDECINE ET PHARMACIE CLERMONT-FERRAND CEDEX 01 - FRANCE -TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

ANALYSE DE TYPE B3 C1

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72002

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE - DRAIN 1

LA MARUE DRAIN 1

Réception au laboratoire le 23 Octobre 2000 à 17h17

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat

Limite de Qualité Méthode

Aspect (qualitatif)

Norma I

Chlore résiduel total (mg/l)

Non Déterminé

Chlore résiduel libre (mg/l)

Non Déterminé

Bioxyde de chlore (mg C12/1)

Non Déterminé

Chlorite (µg/1)

Non Déterminé

DETERMINATIONS PHYSICO-CHIMIOUES

Résultat

Limite de Qualité

Méthode

Conductivité à 25°C (µS/cm)

76.4

EN 27888 NF T 9000

pH à 20°C (Unités pH)

6.60

Turbidité (NTU)

<0.2

EN 27027

DETERMINATIONS BACTERIOLOGIQUES

Résultat Coliformes Totaux (UFC/100 ml)

Limite de Qualité

Méthode

Coliformes Thermotolérants (UFC/100 ml)

0 - 50000

NF T 9041 NF T 9041.

Streptocoques Fécaux (UFC/100 ml)

0

0 - 20000

NF T 9041

Spore bactérie anaérobie sulfito réduct. (UFC/20ml) 0

0

<10000

NF T 9041:

Dénombrement à 37° (UFC/ml) Dénombrement à 22° (UFC/ml)

NF T 9040.

Pseudomonas aeruginosa (UFC/100 ml)

Non Déterminé

NF T 90402 ILB Méthod

Remarques et conclusions

Bactériologie: Echantillon conforme en ce qui concerne le paramètre analysé.

Physico-chimie : Eau trés faiblement minéralisée.

Clermont-Ferrand, le 30 Octobre 2000

Analyse validée par :

ALAME Josette

Le Responsable de la diffusion

ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

ANALYSE DE TYPE B3 C1

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72003

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE - DRAIN 2

LA MARUE DRAIN 2

Réception au laboratoire le 23 Octobre 2000 à 17h17

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat

Limite de Qualité

Méthode

Aspect (qualitatif)

Chlore résiduel total (mg/l)

Chlore résiduel libre (mg/l)

Bioxyde de chlore (mg C12/1)

Chlorite (µg/l)

Norma I

Non Déterminé

Non Déterminé

Non Déterminé

Non Déterminé

DETERMINATIONS PHYSICO-CHIMIQUES

Résultat

Limite de Qualité

Méthode

Conductivité à 25°C (μS/cm)

60.0

EN 27888

pH à 20°C (Unités pH)

6.20

E.

NF T 9000

Turbidité (NTU)

<0.2

EN 27027

Méthode

NF T 9041

NF T 9041 NF T 9041 NF T 9041 NF T 904C

NF T 9040

ILB Métho

DETERMINATIONS BACTERIOLOGIQUES

	Résultat	Limite de Qualité
Coliformes Totaux (UFC/100 ml)	0	0 - 50000
Coliformes Thermotolérants (UFC/100 ml)	0	0 - 20000
Streptocoques Fécaux (UFC/100 ml)	0	<10000
Spore bactérie anaérobie sulfito réduct.	(UFC/20ml) 0	
Dénombrement à 37° (UFC/ml)	0	
Dénombrement à 22° (UFC/ml)	0	

Remarques et conclusions

Non Déterminé

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Physico-chimie: Eau trés faiblement minéralisée.

Clermont-Ferrand, le 30 Octobre 2000

Pseudomonas aeruginosa (UFC/100 ml)

Analyse validée par :

ALAME Josette

Le Responsable de la diffusion

ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72004

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE DRAIN 3

LA MARUE DRAIN 3

Réception au laboratoire le 23 Octobre 2000 à 17h17

Prélèvement effectué le 23 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS BACTERIOLOGIQUES

	Résultat	Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	0	0 - 50000	NF T 9041
Coliformes Thermotolérants (UFC/100 ml)	0	0 - 20000	NF T 9041
Streptocoques Fécaux (UFC/100 ml)	0	<10000	NF T 9041
Spore bactérie anaérobie sulfito réduct. (UFC	/20ml) 0		NF T 9041
Dénombrement à 37° (UFC/m1)	1		NF T 9040
Dénombrement à 22° (UFC/ml)	0		NF T 9040
Pseudomonas aeruginosa (UFC/100 ml)	Non Déterminé		ILB Métho

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat		Limite de Qualité	Méthode
Odeur (qualitatif)	Sans odeur		·	
Saveur (qualitatif)	Sans saveur	9		
Température de l'eau (°C)	7.5		0.0 - 25.0	NF T 9010
Température de l'air (°C)	Non Déterminé			NF T 9010
Chlore résiduel total (mg/l)	Non Déterminé			
Chlore résiduel libre (mg/l)	Non Déterminé			
Bioxyde de chlore (mg C12/1)	Non Déterminé			
Chlorite (µg/l)	Non Déterminé			
Hydrogène sulfuré	Absence			IIR Métho

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

3727 X N 4. 17

 $\mathcal{H} = d^*$

A.

Clermont-Ferrand, le 10 Novembre 2000

Analyse validée par :

CLEMENT Bruno

Le Responsable de la diffusion

CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 56 11

ANALYSE OFFICIELLE B3C3C4abcd

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72004

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES Captage LA MARUE DRAIN 3

LA MARUE DRAIN 3

Réception au laboratoire le 23 Octobre 2000 à 17h17

Benzo (1,12) Pérylène ($\mu g/l$)

* Indéno (1,2,3-cd) Pyrène (μg/1)

* Total (μg/l)

Prélèvement effectué le 23 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4a)

		Resultat		Limite de Qualité	Méthode
	Azote KJELDAHL (mg N/1)	<1.00			EN 25663
	Hydrocarbures totaux (mg/l)	<0.01		0.00 - 1.00	NF T 901.
	Agents de surface anioniques (mg SABM/1)	<0.10			EN 903
	Indice Phénol (mg/l)	<0.025		0.000 - 0.100	NF T 9010
	DETERMINATION	S PHYSICO-CHIMIQUES	(type	C4b)	
		Résultat		Limite de Qualité	Méthode
	Cadmium (mg/l)	<0.0005		0.0000 - 0.0050	NF T 901.
	Plomb (mg/l)	<0.005		0.000 - 0.050	NF T 901.
	MPA (Hydrocarbures Polycycliques Aromatiques en p	g/1)			
r	Fluoranthène (μg/l)	<0.001			NFT90115
	Benzo (3,4) Fluoranthène (μg/l)	<0.010			NFT90115
•	Benzo (11,12) Fluoranthène (μg/l)	<0.005			NFT90115
,	Benzo (3,4) Pyrène (μg/1)	<0.001			NFT90115

< 0.020

< 0.020

0.000

Clermont-Ferrand, le 10 Novembre 2000

Analyse validée par :

CLEMENT Bruno

Le Responsable de la diffusion

NFT90115

NFT90115

NFT90115

194 5 3.70

CLEMENT Bruno

0.000 - 1.000

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL: [33] 04 73 28 84 50 - FAX: (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72004

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE DRAIN 3

LA MARUE DRAIN 3

Réception au laboratoire le 23 Octobre 2000 à 17h17

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c)

		DETERMINATIONS	PHYSICO-CHI	MIQUES	(type	C4c)	
			Résultat			Limite de Qualité	Méthode
	Arsenic (mg/l)		<0.005	8		0.000 - 0.100	NF T 9011
	Chrome total (mg/l)		<0.002			0.000 - 0.050	NF T 9011
	Mercure (mg/1)		<0.0002			0.0000 - 0.0010	ILB Metho
	Sélénium (mg/l)		<0.005			0.000 - 0.010	NF T 9011
	Cyanures totaux (mg/1)		<0.01			0.000 - 0.050	NF T 9010
	Solvants Halogénés Volatil	s					
	* Chloroforme (μg/l)		0.60				ILB Métho
	* 1,1,1-Trichloroéthane (μg/		<0.01				ILB Métho
	* Tétrachlorure de carbone (μg/l)	<0.01				ILB Métho
	* Trichloroéthylène (μg/l)		<0.01				ILB Métho
	* Bromodichlorométhane (μg/l	*	<0.01				ILB Métho
	* cis-1,3-Dichloropropène (բ		<0.01				ILB Métho
	* trans-1,3-Dichloropropène	(µg/l)	<0.01				ILB Métho
j	* 1,1,2-Trichloroéthane (μg/	1)	<0.05				ILB Métho
	* Tétrachloroéthylène (μg/l)		<0.01				ILB Mētho
	* Chlorodibromométhane (μg/l))	<0.01				ILB Métho
	* Chlorobenzène (μg/l)		<1				ILB Métho
	* Bromoforme (μg/l)		<0.01				ILB Méthod
	* 1,1,2,2-Tétrachloroéthane ((µg/l)	<0.01				ILB Měthou
	* 1,3-Dichlorobenzène (μg/l)		<0.05				ILB Méthod
	* 1,4-Dichlorobenzène (μg/l)		<0.05				ILB Méthou
	* 1,2-Dichlorobenzène (μg/l)		<0.05				ILB Méthod
	Pesticides Organoazotés (ty	/pe triazine)				-	2.4
	* Atrazine (μg/l)		<0.01				100 m 5
	* Simazine (μg/l)		<0.01				.9.4
l	* Propazine (μg/l)		<0.01				ਗਾ ਛੋੜ- ਜ ਵਿੱਚ - ਜ਼ਵਾ
	* Déséthylatrazine (μg/l)		<0.01				
							6.00

Clermont-Ferrand, le 10 Novembre 2000

* Désisopropylatrazine (μg/l)

Analyse validée par : CLEMENT Bruno

<0.01

Le Responsable de la diffusjon 15: 1 -1 ·

4.58F at 400 All go d fight our

18911 12.7.4 100

CLEMENT Bruno

130,00 FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38. 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72004

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE DRAIN 3

LA MARUE DRAIN 3

Réception au laboratoire le 23 Octobre 2000 à 17h17

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W. DDASS 63

Résultat Limite de Qualité Méthode Pesticides organochlorés * HCB (μg/1) <0.01 * alpha HCH (μg/1) <0.02 * Lindane (µg/1) <0.02 * Heptachlore (µg/1) < 0.02 * Aldrin (µq/l) < 0.02 * Heptachlore epoxide (μg/l) < 0.02 * Endosulfan (μg/l) < 0.02 * Dieldrin (μg/l) < 0.02 * Endrin (μg/l) <0.02

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c) (SUITE)

* DDT pp' (µg/1) <0.02

* B HCH (µg/1) <0.02

* DDE pp' (µg/1) <0.02

* DDD op' (µg/1) <0.02

* DDD op' (µg/1) <0.02

Pesticides organophosphorés

* Dimethoate ($\mu g/1$) <0.01 * EPN ($\mu g/1$) <0.01 * Malathion ($\mu g/1$) <0.01 * Monocrotophos ($\mu g/1$) <0.01

* Parathion (µg/1) <0.01

* Sulfotepp (µg/1) <0.01

* TEPP (µg/1) <0.01

DETERMINATIONS PHYSICO-CHIMIQUES (type C4d)

Résultat Limite de Qualité Méthode Demande Biochimique en Oxygène - DBO/5 (mg 02/1) <3.0 NF T 90103 Demande Chimique en Oxygène (mg 02/1) <30 NF T 90101 Bore (mg/1) <0.050 ILB Méthod Baryum (mg/1) <0.050 0.000 - 1.000ILB Méthod Substances extractibles au chloroforme (mg/1) <0.10 ILB Méthod

Clermont-Ferrand, le 10 Novembre 2000

Analyse validée par :

CLEMENT Bruno

Le Responsable de la diffusion

CLEMENT Bruno

Tarl .

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72004

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE DRAIN 3

LA MARUE DRAIN 3

Réception au laboratoire le 23 Octobre 2000 à 17h17

Prélèvement effectué le 23 Octobre 2000 par DE ESCOBAR W, DDASS 63

	ANALYSE DES ANIONS		
Chlorures (mg/l)	Résultat	Limite de Qualité	Méthode
Nitrites (mg NO2/1)	1.8 <0.050		Std Meth
Nitrates (mg NO3/1)	2.00		NF T 900.
Sulfates (mg/1)	6.5	0.0 - 50.0	NF T 900.
Hydrogénocarbonates (HCO3) (mg/1)	7.3	0.0 - 250.0	ISO 1030
Carbonates (CO3) (mg/l)	0.00		Calculé Calculé
Phosphore total (mg P2O5/1)	<0.10		NF T 900;
Fluorures (mg/l)	<0.05		ISO 1035!

	ANALYSE DES CATIONS		
	Résultat	Limite de Qualité	Méthode
Ammonium (mg NH4/1)	0.06	0.00 - 4.00	
Calcium (mg/l)	2.10	0.00 - 4.00	ISO 7150-
Magnésium (mg/l)	0.60		Std Metho
Sodium (mg/1)	4.2		Std Metho
Potassium (mg/l)	0.4		NF T 9001
Manganèse (mg/1)	<0.005		NF T 9001
Fer (mg/1)	0.005		NF T 9011
Zinc (mg/l)	<0.030	0.000	Std Methc
Aluminium (mg/1)	0.018	_0.000 - 5.000	NF T 9011
Cuivre (mg/l)			NF T 9011
out vice (mg/T)	<0.002		NE T QOII

Clermont-Ferrand, le 10 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion

hey.

1.1

CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 553

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72004

Produit : Eau de consonwation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE DRAIN 3

LA MARUE DRAIN 3

Réception au laboratoire le 23 Octobre 2000 à 17h17

Prélèvement effectué le 23 Octobre 2000 par DE ESCOBAR W, DDASS 63

ANALYSE PHYSICO-CHIMIQUE

Conductivité à 25°C (μS/cm)	Résultat	Limite de Qualité	Méthode
	36.9		EN 27888
pH à 20°C (Unités pH)	5.60		NF T 900
pH après marbre (à 20°C) (Unités pH)	6.90		11 1 300
Titre Alcalimétrique Complet (TAC) (°F)	0.6		TID WELL
T.A.C. après marbre (°F)	5.2		ILB Méth
Titre Hydrotimétrique Total (THT) (°F)	-		ILB Méth
	8.0		Calculé
Titre Hydrotimétrique Permanent (THP) (°F)	0.2		Calculé
Silice (mg SiO2/1)	19.00		1LB Meth
Oxygène dissous (mg O2/1)	9.4		
Couleur (quantitatif) (Hazen)	<5		EN 25813
			ILB Méth
Résidu sec à 175-185°C (mg/l)	47.0		NF T 900.
Oxydabilité à chaud en milieu acide (mg 02/1)	<0.5		ISO 8467
Turbidité (NTU)	0.3		0.00
Titre Alcalimétrique (TA) (°F)	<0.1		EN 27027
. , , , ,			ILB Méthu
Anhydride carbonique libre (mg CO2/1)	31.3		NF T 900.

Remarques et conclusions

Physico-chimie : Eau extrêmement peu minéralisée.

Clermont-Ferrand, le 10 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion 1.75

6 5g 11

 $A^{1}(x,A,y)$ 5.50 7.8

4541.00

CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72004

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE DRAIN 3

LA MARUE DRAIN 3

Réception au laboratoire le 23 Octobre 2000 à 17h17

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W, DDASS 63

ANNEXE - BILAN IONIQUE

	mg/1	meg/1
Chlorures	1.8	0.05
Nitrites	<0.050	<0.01
Nitrates	2.00	0.03
Sulfates	6.5	0.14
Hydrogénocarbonates (HCO3)	7.3	0.12
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.34
	mg/1 ==	meq/l
Ammonium	0.06	<0.01
Calcium	2.10	0.10
Magnésium	0.60	0.05
Sodium	4.2	0.18
Potassium	0.4	0.01
Manganèse	<0.005	<0.01
Fer	0.005	<0.01
Zinc	<0.030	<0.01
Aluminium	0.018	<0.01
Cuivre	<0.002	<0.01
TOTAL CATIONS		0.34

Clermont-Ferrand, le 10 Novembre 2000

Analyse validée par : CLEMENT Bruno Le Responsable de la diffusio CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

ANALYSE DE B3 C1 TYPE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS

63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72005

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE - DRAIN 4

LA MARUE DRAIN 4

Réception au laboratoire le 23 Octobre 2000 à 17h17

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS REALISES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat Norma l

Limite de Qualité Méthode

Aspect (qualitatif)

Chlore résiduel total (mg/l)

Chlore résiduel libre (mg/l)

Bioxyde de chlore (mg C12/1)

Chlorite (µg/l)

Non Déterminé

Non Déterminé

Non Déterminé

Non Déterminé

DETERMINATIONS PHYSICO-CHIMIQUES

Résultat 47.6

Limite de Qualité

Limite de Qualité

0 - 50000

0 - 20000

<10000

Méthode EN 27888

Conductivité à 25°C (µS/cm)

pH à 20°C (Unités pH)

5.90

NF T 90008

Turbidité (NTU)

< 0.2

EN 27027

Méthode

NF T 90414

NF T 90414

NF T 90416

NF T 90415

NF T 90401

NF T 90402

ILB Méthoa

DETERMINATIONS BACTERIOLOGIQUES

			Résultat
oliformes	Totaux (UFC/10	00 ml)	2
aliformes	Thermotolerant	's (HFC/100 ml)	2

Coliformes Thermotolérants (UFC/100 ml) Streptocoques Fécaux (UFC/100 ml)

Spore bactérie anaérobie sulfito réduct. (UFC/20ml) 0 Dénombrement à 37° (UFC/ml)

Dénombrement à 22° (UFC/ml)

Pseudomonas aeruginosa (UFC/100 ml)

10

Non Déterminé

Remarques et conclusions

Bactériologie : Echantillon contaminé. Eau non potable.

Physico-chimie : Eau extrêmement peu minéralisée.

Clermont-Ferrand, le 30 Octobre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusior ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

ANALYSE DE TYPE B3 C1

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72006

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE -DRAIN 5

LA MARUE DRAIN 5

Réception au laboratoire le 23 Octobre 2000 à 17h17

Prélèvement effectué le 23 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat Normal.

Limite de Qualité Méthode

Aspect (qualitatif)

Chlore résiduel total (mg/l)

Chlore résiduel libre (mg/l)

Bioxyde de chlore (mg C12/1)

Conductivité à 25°C (µS/cm)

pH à 20°C (Unités pH)

Turbidité (NTV)

Chlorite (µg/1)

Non Déterminé

Non Déterminé

Non Déterminé

Non Déterminé

DETERMINATIONS PHYSICO-CHIMIQUES

Résultat

36.6

5.80

< 0.2

Limite de Qualité

Méthode EN 27888

NF T 90008

EN 27027

ILB Méthoa

DETERMINATIONS BACTERIOLOGICUES

	DDIDIGITHITITIONS	DVCITITATIONORIAND		
	Résultat	-	Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	0		0 - 50000	NF T 90414
Coliformes Thermotolérants (UFC/100 m	nl) 0		0 - 20000	NF T 90414
Streptocoques Fécaux (UFC/100 ml)	0		<10000	NF T 90416
Spore bactérie anaérobie sulfito rédu	ict. (UFC/20ml) 0			NF T 90415
Dénombrement à 37° (UFC/ml)	2			NF T 90401
Dénombrement à 22° (UFC/ml)	5			NF T 90402

Pseudomonas aeruginosa (UFC/100 ml) Non Déterminé

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Physico-chimie : Eau extrêmement peu minéralisée.

Clermont-Ferrand, le 30 Octobre 2000

Analyse validée par :

ALAME Josette

Le Responsable de la diffusior

ALAME Josette

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

RESULTATS D'ANALYSES

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72007

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGES 1.2.3.4.5

Réception au laboratoire le 23 Octobre 2000 à 17h09

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat Limite de Oualité Méthode Température de l'eau (°C) Non Déterminé 0.0 - 25.0NF T 90100 Température de l'air (°C) Non Déterminé NF T 90100 Odeur (qualitatif) Sans odeur Saveur (qualitatif) Sans saveur Chlore résiduel libre (mg/l) Non Déterminé Chlore résiduel total (mg/l) Non Déterminé Bioxyde de chlore (mg C12/1) Non Déterminé Chlorite (µg/1) Non Déterminé Hydrogène sulfuré **Absence** ILB Méthod

ANALYSES PHYSICO-CHIMIOUES

V	WINDING BUINTON CHIMI	.QUES	
	Résultat	Limite de Qualité	Méthode
Conductivité à 25°C (μS/cm)	43.3	,	EN 27888
pH à 20°C (Unités pH)	5.90		NF T 90008
pH après marbre (à 20°C) (Unités pH)	6.90		W 1 20000
Titre Alcalimétrique Complet (TAC) (°F)	1.2		ILB Méthod
T.A.C. après marbre (°F)	5.1		ILB Méthod
Titre Hydrotimétrique Total (THT) (°F)	1.4		Calculé
Titre Hydrotimétrique Permanent (THP) (°F)	0.2		Calculé
Silice (mg Si02/1)	22.70	20	ILB Method
Oxygène dissous (mg 02/1)	9.7		EN 25813
Couleur (quantitatif) (Hazen)	<5	-	ILB Méthod
Résidu sec à 175-185°€ (mg/l)	52.0		NF T 90029
Oxydabilité à chaud en milieu acide (mg 02	/1) <0.5		ISO 8467
Turbidité (NTV)	0.3	97	EN 27027
Titre Alcalimétrique (TA) (°F)	<0.1	×	ILB Méthod
Anhydride carbonique libre (mg CO2/1)	33.6		NF T 90011
			111 1 30011

Remarques et conclusions

Physico-chimie : Eau extrêmement peu minéralisée.

Clermont-Ferrand, le 15 Novembre 2000

Analyse validée par : CLEMENT Bruno Le Responsable de la diffusion CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

29 15 2941-3-

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72007

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGES 1.2.3.4.5

Réception au laboratoire le 23 Octobre 2000 à 17h09

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4a)

Azote KJELDAHL (mg N/l)	Résultat < 1.00	Limite de Qualité	Méthode EN 25663
Hydrocarbures totaux (mg/l) Agents de surface anioniques (mg SABM/l)	<0.01 <0.10	0.00 - 1.00	NF T 9011 ² EN 903
Indice Phénol (mg/l)	<0.025	0.000 - 0.100	NF T 90105

DETERMI Cadmium (mg/l) Plomb (mg/l) HPA (Hydrocarbures Polycycliques Aroma	INATIONS PHYSICO-CHIMIQUES Résultat <0.0005 <0.005 atiques en µg/1)	Limite de Qualité 0.0000 - 0.0050 0.000 - 0.050	Méthode <i>NF T 9011</i> <u>9</u> <i>NF T 9011<u>9</u></i>
* Fluoranthène (μg/l) * Benzo (3,4) Fluoranthène (μg/l) * Benzo (11,12) Fluoranthène (μg/l) * Benzo (3,4) Pyrène (μg/l) * Benzo (1,12) Pérylène (μg/l) * Indéno (1,2,3-cd) Pyrène (μg/l) * Total (μg/l)	<0.001 <0.010 <0.005 <0.001 <0.020 <0.020 0.000	0.000 - 1.000	NFT90115 NFT90115 NFT90115 NFT90115 NFT90115 NFT90115 NFT90115

Clermont-Ferrand, le 15 Novembre 2000

Analyse validée par : CLEMENT Bruno Le Responsable de la diffusion CLEMENT Bruno

Postsy

ne p militar

WEST TOOL TO

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72007

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret ; 89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGES 1.2.3.4.5

Réception au laboratoire le 23 Octobre 2000 à 17h09

23 Octobre 2000 par DE ESCOBAR W, DDASS 63 Prélèvement effectué le

	DETERMINATIONS PHY	SICO-CHIMIQUES	(type	C4c)	
	Résult	at	8	Limite de Qualité	Méthode
Arsenic (mg/l)	<0.00	5		0.000 - 0.100	NF T 90119
Chrome total (mg/l)	<0.00	2		0.000 - 0.050	NF T 90119
Mercure (mg/l)	<0.00	02		0.0000 - 0.0010	ILB Methoa
Sélénium (mg/l)	<0.00	5		0.000 - 0.010	NF T 90119
Cyanures totaux (mg/l)	<0.01			0.000 - 0.050	NF T 90107
Solvants Halogénés Volatil	S				
* Chloroforme (μg/l)	0.60				ILB Méthod
* 1,1,1-Trichloroéthane (μg/	1) <0.01				ILB Méthod
* Tétrachlorure de carbone (μg/l) < 0.0 1				ILB Méthod
* Trichloroéthylène (μg/l)	<0.01				ILB Méthod
* Bromodichlorométhane (μg/l]					ILB Méthod
* cis-1,3-Dichloropropène (μ	g/1) < 0.0 1				ILB Méthod
* trans-1,3-Dichloropropëne					ILB Méthod
* 1,1,2-Trichloroéthane (μg/	1) <0.05				ILB Méthod
* Tétrachloroéthylène (μg/l)	<0.01				ILB Méthod
* Chlorodibromométhane (μg/l)	(0.01				ILB Méthod
* Chlorobenzène (μg/l)	<1				ILB Méthod
* Bromoforme (μg/1)	<0.01				ILB Méthod
* 1,1,2,2-Tétrachloroéthane	(μg/l) < 0.0 1				ILB Méthod
* 1,3-Dichlorobenzène (μg/l)	<0.05				ILB Méthod
* 1,4-Dichlorobenzène (μg/l)	<0.05				ILB Méthod
* 1,2-Dichlorobenzène (μg/l)	<0.05				ILB Méthod
Pesticides Organoazotés (ty	ype triazine)			E	R200 - 601 1
* Atrazine (μg/l)	<0.01				9-1
* Simazine (μg/l)	<0.01				St. My . M
* Propazine (μg/l)	<0.01				90 to h. s. s.
Déséthylatrazine (μg/l)	<0.01				
* Désisopropylatrazine (μg/l)	(0.01				# 5 8

Clermont-Ferrand, le 15 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion William Street

8 8 54 5 61

and appropria

CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL: (33) 04 73 28 84 50 - FAX: (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72007

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGES 1.2.3.4.5

Réception au laboratoire le 23 Octobre 2000 à 17h09

Prélèvement effectué le 23 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c) (SUITE)

	Résultat	(111)	Limite de Qualité	Méthode
Pesticides organochlorés				1.0011040
* HCB (μg/1)	<0.01			
* alpha HCH (μg/l)	<0.02			
* Lindane (μg/l)	<0.02			
* Heptachlore (μg/1)	<0.02			
* Aldrin (μg/l)	<0.02			
* Heptachlore epoxide (μg/l)	<0.02			
* Endosulfan (μg/l)	<0.02			
* Dieldrin (μg/l)	<0.02			
* Endrin (μg/l)	<0.02			
* DDT pp' (μg/l)	<0.02			
* B HCH (μg/1)	<0.02			1 3 4 45 4
* DDE pp' (μg/l)	<0.02			
* DDD op' (μg/l)	<0.02			
* DDD pp' (μg/l)	<0.02			
Pesticides organophosphorés				
* Dimethoate (μg/l)	<0.01			
* EPN (μg/1)	<0.01			
* Malathion (μg/l)	<0.01			
<pre>* Monocrotophos (μg/l)</pre>	<0.01			
* Parathion (μg/1)	<0.01			
* Sulfotepp (μg/l)	<0.01			1
* TEPP (μg/1)	<0.01		m .	

DETERMINATIONS PHYSICO-CHIMIQUES (type C4d)

	Résultat	Limite de Qualité	Méthode
Demande Biochimique en Oxygène - DBO/5 (mg 02/1)	<3.0		NF T 9010.
Demande Chimique en Oxygène (mg 02/1)	<30		NF T 9010.
Bore (mg/l)	<0.050		ILB Métho
Baryum (mg/l)	<0.050	0.000 - 1.000	ILB Métho
Substances extractibles au chloroforme (mg/l)	<0.10		ILB Métho
Matières en suspension (mg/1)	1.2		NF EN 872

Clermont-Ferrand, le 15 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion

CLEMENT Bruno

(fint

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72007

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGES 1.2.3.4.5

Réception au laboratoire le 23 Octobre 2000 à 17h09

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANALYSE DES ANIONS

	Résultat	Limite de Qualité	Méthode
Chlorures (mg/l)	1.7		Std Methoc
Nitrites (mg NO2/1)	<0.050		NF T 90012
Nitrates (mg NO3/1)	1.90	0.0 - 50.0	NF T 90012
Sulfates (mg/l)	5.6	0.0 - 250.0	ISO 10304
Hydrogénocarbonates (HCO3) (mg/1)	14.6		Calculé
Carbonates (CO3) (mg/l)	0.00		Calculé
Fluorures (mg/l)	<0.05		ISO 10359
Phosphore total (mg P205/1)	<0.10		NF T 90023

ANALYSE DES CATIONS

	WWDIDE DED CHITOND		
	Résultat	Limite de Qualité	Méthode
Ammonium (mg NH4/1)	<0.10	0.00 - 4.00	ISO Z150-2
Calcium (mg/1)	2.80		Std Methoc
Magnésium (mg/l)	1.80		Std Methoc
Sodium (mg/l)	4.8		NF T 90019
Potassium (mg/l)	0.5		NF T 90019
Fer (mg/1)	0.043		Std Method
Manganèse (mg/l)	<0.005		NF T 90115
Aluminium (mg/l)	0.041		NF T 90115
Cuivre (mg/l)	<0.002		NF T 90119
Zinc (mg/1)	<0.030	0.000 - 5.000	NF T 90112

Remarques et conclusions

Remarque : Les analyses SCV ont été confirmées par une double détermination.

Clermont-Ferrand, le 15 Novembre 2000

Analyse validée par : **CLEMENT Bruno**

Le Responsable de la diffusion CLEMENT Bruno ge elante

and the second

n+ "# 12-69

national sections

to disch

No. 1897 3 4) F (MA) gar e gene G ASS. In

FACULTES DE MEDECINE ET DE PHARMACIE - 28. PLACE HENRI DUNANT - B.P. 38. 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04 73 28 84 50 - FAX : (33) 04 73 28 84 55

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72007

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage LA MARUE

MELANGE DE CAPTAGES 1.2.3.4.5

Réception au laboratoire le 23 Octobre 2000 à 17h09

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANNEXE - BILAN IONIQUE

Chlorures Nitrites Nitrates Sulfates Hydrogénocarbonates (HCO3) Carbonates (CO3) Fluorures Phosphore total TOTAL ANIONS	mg/l 1.7 <0.050 1.90 5.6 14.6 0.00 <0.05 <0.10	meq/1 0.05 <0.01 0.03 0.12 0.24 <0.01 <0.01 <0.01	
	mg/1	meq/1	
Anmonium	<0.10	<0.01	1. d. (et -
Calcium	2.80	0.14	3647734134
Magnésium	1.80	0.15	
Sodium	4.8	0.21	
Potassium	0.5	0.01	
Fer	0.043	<0.01	
Manganèse	<0.005	<0.01	
Aluminium	0.041	<0.01	
Cuivre	<0.002	<0.01	
Zinc	<0.030	<0.01	
TOTAL CATIONS		0.51	

Clermont-Ferrand, le 15 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion CLEMENT Bruno

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT FERRAND CEDEX - FRANCE - TEL: (33) 04 73 28 84 50 - FAX: (33) 04 73 28 84 55

JOUVET

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME

Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND

Réf: 234936

SIAEP HAUT-LIVRADOIS

Mairie d'ARLANC 63220 ARLANC

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES

Captage JOUVET

Dans réservoir de Jouvet - Par immersion

Réception au laboratoire :

06/10/2008 14:50:00

Prélèvement effectué le : 06/10/2008 11:30:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

ļ	nalyse	Résultat						Limite de Qualité	Réalisé le	Méthode
			Analys	ses	bacte	ériolo	giques			
C	Coliformes Totaux	4 UFC/100 ml							06/10/2008	NF EN ISO 9308-1
0	Escherichia coli	0 UFC/100 ml						x <= 20000	06/10/2008	NF EN ISO 9308-1
©	Entérocoques	0 UFC/100 ml					91	x <= 10000	06/10/2008	NF EN ISO 7899-2
©	Spore Bactérie Sulfito-réductrice	0 UFC/100 ml							06/10/2008	NF EN 26461-2
¢	Dénombrement à 22°	2 UFC/ml							06/10/2008	NF EN ISO 6222
0	Dénombrement à 37°	0 UFC/ml							06/10/2008	NF EN ISO 6222
			Analyses	de	es tra	ces o	rganiqu	ıes		
©	Indice Hydrocarbures	<0.1 mg/l						x <= 1,00	07/10/2008	NF EN ISO 9377-2
H	ydrocarbures Polycycliques A	romatiques							06/10/2008	NF EN ISO 17993
	Fluoranthène	<0.001 µg/l								
	Benzo(b)fluoranthène	<0.010 µg/l								
	Benzo(k)fluoranthène	<0.005 µg/l								
	Benzo(a)pyrène	<0.001 µg/l								
	Benzo(ghi)pérylène	<0.020 µg/l								
	Indeno(1,2,3-cd)pyrène	<0.020 µg/l								
	Total des 6 subsances	<0.020 µg/l						x <= 1,000		
0	Benzène	<0.5 µg/l							13/10/2008	NF ISO 11423-1
© S	olvants Halogénés Volatils								13/10/2008	Méthode ILB
-	Trichloroéthylène	<0.50 µg/l								
-	Tétrachloroéthylène	<0.50 µg/l								
-	1,2-Dichloroéthane	<0.50 µg/l								
-	Total tetra+trichloroéthylène	<0.50 µg/l								
(C)	Chlorure de vinyle	<0.30 µg/l							13/10/2008	Méthode ILB

Clermont-Ferrand, le 30/10/2008

Analyse validée par : ALAMÉ Josette Responsable de la diffusion :

ALAMÉ Josette

Page 1 de 2

ACCREDITATION
Nº 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

(Suite.)

Réf: 234936

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES

Captage JOUVET

Dans réservoir de Jouvet - Par immersion

Réception au laboratoire :

06/10/2008 14:50:00

Prélèvement effectué le : 06/10/2008 11:

06/10/2008 11:30:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

	Analyse	Résultat	Limite de Qualité	Réalisé le	Méthode		
		Analyses physico-chimiqu	es				
C	pH à 20°C	5.95 Unités pH		06/10/2008	NF T 90-008		
C	Conductivité à 25°C	64.1 µS/cm		06/10/2008	NF EN 27888		
C	Résistivité à 25°C	15601 ohm.cm		08/10/2008			
C	Potassium	0.8 mg/l		15/10/2008	NF T 90-019		
C	Indice Phénol	<0.025 mg/l	x <= 0,100	13/10/2008	T 90-109		
C	Cyanures totaux	<10,0 μg/l		14/10/2008	NF EN ISO 14403		
C	Agents de surface anioniques	<0,10 mg SABM/I	x <= 0.10	10/10/2008	NF EN 903		
	Analyses de radioactivité (analyses sous traitées)						
	Activité Beta Résiduelle	0.02 Bg/L	ous traiteds)	17/10/2008	calcul		
	Activité Alpha Globale	<0,02 Bg/L		17/10/2008	NF M 60-801		
	Activité Beta Globale	0.04 Bg/L		17/10/2008	NF M 60-800		
	Activité Potassium 40	0.02 Bg/L		13/10/2008	calcul		
	Activité volumique Tritium	<1.00 Bg/L		21/10/2008	NF M 60-802-1		
	Dose Totale Indicative	<8,20 mSv/an		16/10/2008	Calcul		
		Mesures sur le terrain		10/10/2000	Guiodi		
	Aspect (qualitatif)	Normal		06/10/2008	Méthode ILB		
	Hydrogène sulfuré	Absence		06/10/2008	Méthode ILB		
()	Hq	6.20 Unités pH		06/10/2008	NF T 90-008		
	Température de l'air	11.0 °C		06/10/2008	Méthode ILB		
	Température de l'eau	8.5 °C	x <= 25.0	06/10/2008	Méthode ILB		
	•	Analyses de traces inorganiq		00/10/2000	Methode ILD		
C	Aluminium	<0.010 mg/l	ucs	07/40/0000	NE EN 100 44005		
Ó	Baryum	<0.050 mg/l	x <= 1	07/10/2008	NF EN ISO 11885		
C	Chrome total	<0.010 mg/l	x <= 0,050	06/10/2008 06/10/2008	NF EN ISO 11885		
C	Cuivre	<0.010 mg/l	X <= 0,030	06/10/2008	NF EN ISO 11885 NF EN ISO 11885		
(C)	Fer	<0.010 mg/l		06/10/2008	NF EN ISO 11885		
(C)	Mercure	0.0003 mg/l	x <= 0.0010	08/10/2008	NF EN 1483		
(C*)	Plomb	<0.005 mg/l	X ~= 0,0010		NF EN ISO 17294-2		
0	Zinc	<0.010 mg/l	x <= 5.000	06/10/2008	NF EN ISO 17294-2 NF EN ISO 11885		
		3	X 0,000	JU/10/2000	MI EN 190 11009		

Remarques et Conclusions

ATTENTION CHANGEMENT DE POINT - prélèvement au réservoir de Jouvetr au lieu de captage -Infos DDASS en attente

Clermont-Ferrand, le 30/10/2008

Analyse validée par : ALAMÉ Josette Responsable de la diffusion :

ALAMÉ Josette

Page 2 de 2

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

ET DE PHARMACIE CEDEX 01 - FRANCE -

- 28, PLACE HENRI TEL: 04 73 28 84 50 DUNANT - B.P. 38 FAX: 04 73 28 84 55

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME

Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND

SIAEP HAUT-LIVRADOIS Mairie d'ARLANC **63220 ARLANC**

Réf: 234936

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES

Captage JOUVET

Dans réservoir de Jouvet - Par immersion

Réception au laboratoire :

06/10/2008 14:50:00

Prélèvement effectué le :

06/10/2008 11:30:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

ļ	Analyse	Résultat				Limite de Qualité	Réalisé le	Méthode
			Analys	es bactéri	iologiques			
(C)	Coliformes Totaux	4 UFC/100 ml					06/10/2008	NF EN ISO 9308-1
Ċ	Escherichia coli	0 UFC/100 ml				x <= 20000	06/10/2008	NF EN ISO 9308-1
(\underline{C})	Entérocoques	0 UFC/100 ml				x <= 10000	06/10/2008	NF EN ISO 7899-2
(C)	Spore Bactérie Sulfito-réductrice	0 UFC/100 ml					06/10/2008	NF EN 26461-2
(C)	Dénombrement à 22°	2 UFC/ml					06/10/2008	NF EN ISO 6222
(C)	Dénombrement à 37°	0 UFC/ml					06/10/2008	NF EN ISO 6222
			Analyses	des trace	s organiqu	es		
(C)	Indice Hydrocarbures	<0.1 mg/l				x <= 1,00	07/10/2008	NF EN ISO 9377-2
Н	ydrocarbures Polycycliques Ai	romatiques					06/10/2008	NF EN ISO 17993
	Fluoranthène	<0.001 µg/l						
	Benzo(b)fluoranthène	<0.010 µg/l						
	Benzo(k)fluoranthène	<0.005 µg/l						
	Benzo(a)pyrène	<0.001 µg/l						
	Benzo(ghi)pérylène	<0.020 µg/l						
	Indeno(1,2,3-cd)pyrène	<0.020 µg/l						
	Total des 6 subsances	<0.020 µg/l				x <= 1,000		
$\langle C \rangle$	Benzène	<0.5 µg/l					13/10/2008	NF ISO 11423-1
© S	olvants Halogénés Volatils						13/10/2008	Méthode ILB
-	Trichloroéthylène	<0.50 µg/l					13/10/2000	
-	Tétrachloroéthylène	<0.50 µg/l						
-	1,2-Dichloroéthane	<0.50 µg/l						
-	Total tetra+trichloroéthylène	<0.50 µg/l						
O	Chlorure de vinyle	<0.30 µg/l					13/10/2008	Méthode ILB

Clermont-Ferrand, le 30/10/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 1 de 2

FACULTES

cofrac ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE ESSAIS SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

MEDECINE PHARMACIE

PLACE HENRI DUNANT 28.

B.P. 38 FAX: 04 73 28 84 55

DE 63001 **CLERMONT-FERRAND**

CEDEX 01 - FRANCE -

TEL: 04 73 28 84 50

(Suite.)

Réf: 234936

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES

Captage JOUVET

Dans réservoir de Jouvet - Par immersion

Réception au laboratoire :

06/10/2008 14:50:00

Prélèvement effectué le :

06/10/2008 11:30:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

-	Analyse	Résultat	Limite de Qualité	Réalisé le	Méthode			
	Analyses physico-chimiques							
\mathbf{C}	pH à 20°C	5.95 Unités pH		06/10/2008	NF T 90-008			
C	Conductivité à 25°C	64.1 µS/cm		06/10/2008	NF EN 27888			
C	Résistivité à 25°C	15601 ohm.cm		08/10/2008	NF EN 27888			
(C)	Potassium	0.8 mg/l		15/10/2008	NF T 90-019			
C	Indice Phénol	<0.025 mg/l	$x \le 0,100$	13/10/2008	T 90-109			
C	Cyanures totaux	<10,0 µg/l		14/10/2008	NF EN ISO 14403			
(C)	Agents de surface anioniques	<0,10 mg SABM/l	x <= 0,10	10/10/2008	NF EN 903			
		Analyses de radioactivité (analyses so	ous traitées)					
	Activité Beta Résiduelle	0.02 Bq/L		17/10/2008	calcul			
	Activité Alpha Globale	<0,02 Bq/L		17/10/2008	NF M 60-801			
	Activité Beta Globale	0.04 Bq/L		17/10/2008	NF M 60-800			
	Activité Potassium 40	0.02 Bq/L		13/10/2008	calcul			
	Activité volumique Tritium	<1.00 Bq/L		21/10/2008	NF M 60-802-1			
	Dose Totale Indicative	<8,20 mSv/an		16/10/2008	Calcul			
Mesures sur le terrain								
	Aspect (qualitatif)	Normal		06/10/2008	Méthode ILB			
	Hydrogène sulfuré	Absence		06/10/2008	Méthode ILB			
(C)	рН	6.20 Unités pH		06/10/2008	NF T 90-008			
	Température de l'air	11.0 °C		06/10/2008	Méthode ILB			
	Température de l'eau	8.5 °C	x <= 25,0	06/10/2008	Méthode ILB			
		Analyses de traces inorganique	ues					
C	Aluminium	<0.010 mg/l		07/10/2008	NF EN ISO 11885			
(C)	Baryum	<0.050 mg/l	x <= 1	06/10/2008	NF EN ISO 11885			
C	Chrome total	<0.010 mg/l	x <= 0,050	06/10/2008	NF EN ISO 11885			
O	Cuivre	<0.010 mg/l		06/10/2008	NF EN ISO 11885			
C	Fer	<0.010 mg/l		06/10/2008	NF EN ISO 11885			
lacktriangle	Mercure	0.0003 mg/l	x <= 0,0010	08/10/2008	NF EN 1483			
C	Plomb	<0.005 mg/l		17/10/2008	NF EN ISO 17294-2			
O	Zinc	<0.010 mg/l	x <= 5,000	06/10/2008	NF EN ISO 11885			

Remarques et Conclusions

ATTENTION CHANGEMENT DE POINT - prélèvement au réservoir de Jouvetr au lieu de captage -Infos DDASS en attente

Clermont-Ferrand, le 30/10/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion :

ALAMÉ Josette

Page 2 de 2

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

DE **MEDECINE CLERMONT-FERRAND**

ET DE PHARMACIE CEDEX 01 - FRANCE

28. PLACE HENRI TEL: 04 73 28 84 50

DUNANT B.P. 38 FAX: 04 73 28 84 55

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

A C. C. John

Rf: 124671

Produit : Eau de consommation humaine au point de mise en distribution (Code de la Santé Publique -

article R 1321-1 et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage JOUVET

DANS REGARD

Réception au laboratoire le 14 Septembre 2004 à 13h55

Prélèvement effectué le 14 Septembre 2004 à 10h10 par BASSO S., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Incert.	Limite de Qualité	Méthode
Aspect (qualitatif)	Normal			Méthode ILB
Chlore résiduel total (mg/l)	Non Déterminé			Méthode ILB
Chlore résiduel libre (mg/l)	Non Déterminé			Méthode ILB
Bioxyde de chlore (mg Cl2/1)	Non Déterminé			Méthode ILB
Chlorite (µg/l)	Non Déterminé		0.0 - 200.0	Méthode ILB
Température de l'eau (°C)	8.0		0.0 - 25.0	Méthode ILB

DETERMINATIONS PHYSICO-CHIMIQUES

		Résultat	Incert.	Limite de Qualité	Methode
0	рн à 20°C (Unités pH)	6.10 /		6.50 ~ 9.00	NF T 90-008
	Conductivité à 25°C (µS/cm)	66.2			NF EN 27888
	Turbidité (NTU)	<0.2		0.0 - 0.5	NF EN ISO 7027
	Ammonium (mg NH4/1)	<0.05		0.00 - 0.10	NF EN ISO 11732
	Nitrites (mg NO2/1)	<0.003		0.000 - 0.500	NF EN ISO 13395
	Nitrates (mg NO3/1)	2.70		0.0 - 50.0	NF EN ISO 13395
	Chlorures (mg/l)	2.1			NF EN ISO 10304-1
	7 7 7 7	6.7		0.0 - 250.0	NF EN ISO 10304-1
	Sulfates (mg/l)	2.5			NF T 90-003
	Dureté (degré F)	1.8			Flux continu
	Titre Alcalimétrique Complet (TAC) (°F)	0.50			NF EN 1484
©	Carbone Organique Total (mg C/1)	0.20			

Clermont-Ferrand, le 17 Septembre 2004

Analyse validée par : ALAME Josette

Le Responsable de la diffusion :

ALAME Josette

ACCREDITATION N° 1-1112 PORTÉE COMMUNIQUÉE SUR DEMANDE Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet. PLACE HENRI DUNANT 28, MÉDECINE ET DE PHARMACIE FACULTÉS DE FAX 04 73 28 84 55 TEL: 04 73 28 84 50 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE -

Page 1 / 2

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 124671

Produit : Eau de consommation humaine au point de mise en distribution (Code de la Santé Publique -

article R 1321-1 et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage JOUVET DANS REGARD

Réception au laboratoire le 14 Septembre 2004 à 13h55

14 Septembre 2004 à 10hl0 par BASSO S., DDASS 63

ANALYSES BACTERIOLOGIQUES

		Résultat	Incert.	Limite de Qualité	Méthode
0	Coliformes Totaux (UFC/100 ml)	12 2		0	NF EN ISO 9308-1
	Escherichia coli (UFC/100 ml)	12 2		0	NF EN ISO 9308-1
	Entérocoques (UFC/100 ml)	12 2		0	NF EN ISO 7899
	Spore Bactérie Sulfito-réductrice (UFC/100	Non Déterminé		0	NF EN 26461-2
	ml)				
6	Dénombrement à 37° (UFC/ml)	20			NF EN ISO 6222
	Dénombrement à 22° (UFC/ml)	>300 2			NF EN ISO 6222
		-			

Remarques et conclusions

Bactériologie : Echantillon contaminé.

Clermont-Ferrand, le 17 Septembre 2004

Analyse validée par : ALAME Josette

Le Responsable de la diffusion :

ACCREDITATION PORTÉE COMMUNIQUÉE

Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

PLACE HENRI DUNANT DE 28, MÉDECINE ET PHARMACIE DE TEL: 04 73 28 84 50 FAX: 04 73 28 84 55 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE -

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

3 OCT - 2104

Rf: 127628

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

Origine de prélèvement Commune de MEDEYROLLES

Captage JOUVET

REGARD DE JONCTION

Réception au laboratoire le 19 Octobre 2004 à 15h20

Prélèvement effectué le 19 Octobre 2004 à 13h15 par FRANC L., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat	Incert.	Limite de Qualite	Methode
Normal			Méthode ILB
0.12			Méthode ILB
0.11			Méthode ILB
Non Déterminé			Méthode ILB
Non Déterminé			Méthode ILB
5.0		<25.0	Méthode ILB
	Normal 0.12 0.11 Non Déterminé Non Déterminé	Normal 0.12 0.11 Non Déterminé Non Déterminé	Normal 0.12 0.11 Non Déterminé Non Déterminé

ANALYSES BACTERIOLOGIQUES

			~		
		Résultat	Incert.	Limite de Qualité	Méthode
©	Coliformes Totaux (UFC/100 ml)	0			NF EN ISO 9308-1
©	Escherichia coli (UFC/100 ml)	0			NF EN ISO 9308-1
©	Entérocoques (UFC/100 ml)	0		0 - 10000	NF EN ISO 7899
0	Spore Bactérie Sulfito-réductrice (UFC/100	Non Déterminé			NF EN 26461-2
	ml)	*0			
©	Dénombrement à 37° (UFC/ml)	0			NF EN ISO 6222
©	Dénombrement à 22° (UFC/ml)	0			NF EN ISO 6222

DETERMINATIONS PHYSICO-CHIMIQUES

		Résultat	Incert.	Limite de Qualité	Méthode
0	Conductivité à 25°C (µS/cm)	65.5			NF EN 27888
0	pH à 20°C (Unités pH)	6.20			NF T 90-008
0	Turbidité (NTU)	<0.2			NF EN ISO 7027
©	Ammonium (mg NH4/1)	<0.05		0.00 - 4.00	NF EN ISO 11732
0	Nitrates (mg NO3/1)	Non Déterminé		0.0 - 50.0	NF EN ISO 13395

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Clermont-Ferrand, le 22 Octobre 2004

Analyse validée par : ALAME Josette

Le Responsable de la diffusion :

· 2 NOV. 2004

ACCREDITATION N° 1-1112 PORTÉE COMMUNIQUÉE Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation Le nombre de pages est indiqué au bas de chaque feuillet.

PLACE HENRI DUNANT MÉDECINE ET DE PHARMACIE 28, FACULTÉS DE 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

ANALYSE DE B3 C1 TYPE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72034

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage JOUVET -DRAIN DROIT

DRAIN DROIT

Réception au laboratoire le 24 Octobre 2000 à 17h03

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat Norma 1

Limite de Qualité

Méthode

Aspect (qualitatif)

Chlore résiduel total (mg/l)

Chlore résiduel libre (mg/l)

Bioxyde de chlore (mg C12/1)

Chlorite (µg/l)

Non Déterminé

Non Déterminé

Non Déterminé

Non Déterminé

DETERMINATIONS PHYSICO-CHIMIQUES

		4-9	
	Résultat	Limite de Qualité	Méthode
Conductivité à 25°C (µS/cm)	60.3		EN 27888
pH à 20°C (Unités pH)	6.30		NF T 900
Turbidité (NTV)	<0.2		EN 27027

DETERMINATIONS BACTERIOLOGICUES

WIIONO DWCIEWIOHOGIĞOED		
Résultat	Limite de Qualité	Méthode
0	0 - 50000	NF T 9041
0	0 - 20000	NF T 9041
0	<10000	NF T 9041
) 0		NF T 9041
1		NF T 9040
0	5.	NF T 9040
Non Déterminé		ILB Métho
	Résultat 0 0 0 0 1 0	Résultat Limite de Qualité 0 0 - 50000 0 0 - 20000 0 <10000) 0 1 0

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Physico-chimie : Eau trés faiblement minéralisée.

Clermont-Ferrand, le 16 Novembre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusio

ALAME Josette

ANALYSE DE TYPE B3 C1

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72035

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage JOUVET - DRAIN GAUCHE

DRAIN GAUCHE

Réception au laboratoire le 24 Octobre 2000 à 17h03

Prélèvement effectué le

24 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat
Aspect (qualitatif)
Chlore résiduel total (mg/l)
Chlore résiduel libre (mg/l)
Bioxyde de chlore (mg C12/l)
Chlorite (µg/l)
Non Déterminé
Non Déterminé
Non Déterminé

DETERMINATIONS PHYSICO-CHIMIOUES

Résultat	Limite de Qualité	. Méthode
52.9		EN 27888
6.10		NF T 9000
<0.2		EN 27027
	Résultat 52.9 6.10	52.9 6.10

DETERMINATIONS BACTERIOLOGIQUES

L	PILLITIMITIONS	PYCIPKIOPOGIÕOED	
	Résultat	Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	0	0 - 50000	NF T 9041
Coliformes Thermotolérants (UFC/100 ml) 0	0 - 20000	NF T 9041
Streptocoques Fécaux (UFC/100 ml)	0	<10000	NF T 9041
Spore bactérie anaérobie sulfito réduc	t. (UFC/20ml) 0		NF T 9041
Dénombrement à 37° (UFC/ml)	0		NF T 9040
Dénombrement à 22° (UFC/ml)	2		NF T 9040
Pseudomonas aeruginosa (UFC/100 ml)	Non Détern	niné	ILB Métho

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Physico-chimie : Eau trés faiblement minéralisée.

Clermont-Ferrand, le 16 Novembre 2000

Analyse validée par : ALAME Josette Le Responsable de la diffusion

ALAME Josette

Limite de Qualité

Méthode

ANALYSE C3 +C4 BC

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72017

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage JOUVET

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Limite de Qualité	Méthode
Odeur (qualitatif)	Sans odeur		
Saveur (qualitatif)	Sans saveur		
Température de l'eau (°C)	Non Déterminé	0.0 - 25.0	NF T 90100
Température de l'air (°C)	Non Déterminé		NF T 90100
Chlore résiduel total (mg/l)	Non Déterminé		
Chlore résiduel libre (mg/l)	Non Déterminé		
Bioxyde de chlore (mg Cl2/1)	Non Déterminé		
Chlorite (µg/l)	Non Déterminé		
Hydrogène sulfuré	Absence		ILB Méthod

DETERMINATIONS PHYSICO-CHIMIQUES (type C4b)

Résultat

Cadmium (mg/l)	<0.0005	0.0000 - 0.0050	NF T 90119
Plomb (mg/l)	<0.005	0.000 - 0.050	NF T 90119
HPA (Hydrocarbures Polycycliques Aroma	tiques en μg/l)		
* Fluoranthène (μg/l)	<0.001		NFT90115
* Benzo (3,4) Fluoranthène (μg/l)	<0.010		NFT90115
* Benzo (11,12) Fluoranthène (μg/l)	<0.005		NFT90115
* Benzo (3,4) Pyrène (μg/1)	<0.001		NFT90115
* Benzo (1,12) Pérylène (μg/l)	<0.020		NFT90115
* Indéno (1,2,3-cd) Pyrène (μg/l)	<0.020		NFT90115
* Total (μg/l)	0.000	0.000 - 1.000	NFT90115

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion :

CLEMENT Bruno

Limite de Qualité

Méthode

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72017

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage JOUVET

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIOUES (type C4c)

	DETERMINATIONS LUISICO-CUINIÕES	(type tac)	
	Résultat	Limite de Qualité	Méthode
Arsenic (mg/l)	<0.005	0.000 - 0.100	NF T 90119
Chrome total (mg/l)	<0.002	0.000 - 0.050	NF T 90119
Mercure (mg/l)	<0.0002	0.0000 - 0.0010	ILB Method
Sélénium (mg/l)	<0.005	0.000 - 0.010	NF T 90119
Cyanures totaux (mg/1)	<0.01	0.000 - 0.050	NF T 90107
Solvants Halogénés Volatils			
* Chloroforme (μg/l)	0.80		ILB Méthod
* 1,1,1-Trichloroéthane (μg/l	(0.01		ILB Méthod
* Tétrachlorure de carbone (μ	g/1) < 0.01		ILB Méthod
* Trichloroéthylène (μg/l)	<0.01		ILB Méthod
* Bromodichlorométhane (μg/l)	<0.01		ILB Méthod
* cis-1,3-Dichloropropène (μg	/1) <0.01		ILB Méthod
* trans-1,3-Dichloropropène (μg/1) < 0.01		ILB Méthod
* 1.1.2-Trichloroéthane (μg/l	(0.05)		ILB Méthod
* Tétrachloroéthylène (μg/l)	<0.01		ILB Méthod
* Chlorodibromométhane (μg/l)	<0.01		ILB Méthod
* Chlorobenzène (μg/l)	<1		ILB Méthod
* Bromoforme (μg/l)	<0.01		ILB Méthod
* 1,1,2,2-Tétrachloroéthane (μg/l) < 0.01		ILB Méthod
* 1.3-Dichlorobenzêne (μg/l)	<0.05		ILB Méthod
* 1,4-Dichlorobenzène (μg/l)	<0.05		ILB Méthod
* 1,2-Dichlorobenzêne (μg/l)	<0.05		ILB Méthod
Pesticides Organoazotés (ty	pe triazine)		
* Atrazine (μg/l)	<0.01		
* Simazine (μg/l)	<0.01		
* Propazine (μg/l)	<0.01		
* Déséthylatrazine (μg/l)	<0.01		
* Désisopropylatrazine (μg/l)	<0.01		

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion :

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement I.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72017

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage JOUVET

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le

24 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c) (SUITE)

		DETERMINATIONS	THISTCO-CHIMITOES	(rybe	(40)	(POLLE)	
			Résultat			Limite de Qualité	Méthode
	Pesticides organoch	lorés				•	
1	* HCB (μg/l)		<0.01				
7	* alpha HCH (μg/l)		<0.02				
7	* Lindane (μg/l)		<0.02				
'n	* Heptachlore (μg/l)		<0.02				
,	* Aldrin (μg/l)		<0.02				
*	* Heptachlore epoxide	(µg/1)	<0.02				
d	k Endosulfan (μg/l)		<0.02				
y	' Dieldrin (μg/l)		<0.02				
7	' Endrin (μg/1)		<0.02				
k	' DDT pp' (μg/1)		<0.02				
*	' Β HCH (μg/1)		<0.02				
*	' DDE pp' (μg/l)		<0.02				
*	' DDD op' (μg/l)		<0.02				
*	' DDD pp' (μg/l)		<0.02				
	Pesticides organopho	sphorés					
*	Dimethoate (μg/1)		<0.01				
*	EPN (μg/1)		<0.01				
*	Malathion (μg/l)		<0.01				
*	Monocrotophos (μg/1)		<0.01				
*	Parathion (μg/1)		<0.01				
*	Sulfotepp (μg/l)		<0.01				
*	TEPP (μg/l)		<0.01				

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72017

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage JOUVET

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANALYSE DES ANIONS

	Résultat	Limite de Qualité	Méthode
Chlorures (mg/l)	2.0		Std Method
Nitrites (mg NO2/1)	<0.050		NF T 90012
Nitrates (mg N03/1)	3.00	0.0 - 50.0	NF T 90012
Sulfates (mg/l)	6.6	0.0 ~ 250.0	ISO 10304
Hydrogénocarbonates (HCO3) (mg/1)	20.7		Calculé
Carbonates (CO3) (mg/1)	0.00		Calculé
Phosphore total (mg P205/1)	0.08		NF T 90023
Fluorures (mg/l)	<0.05		ISO 10359

ANALYSE DES CATIONS

	Résultat	Limite de Qualité	Méthode
Ammonium (mg NH4/1)	<0.10	0.00 - 4.00	ISO 7150-2
Calcium (mg/1)	4.50		Std Method
Magnésium (mg/l)	1.10		Std Method
Sodium (mg/l)	5.5		NF T 90019
Potassium (mg/l)	0.8		NF T 90019
Manganèse (mg/l)	<0.005		NF T 90119
Fer (mg/l)	0.008		Std Method
Zinc (mg/l)	<0.030	0.000 - 5.000	NF T 90112
Aluminium (mg/l)	<0.005		NF T 90119
Cuivre (mg/l)	<0.002		NF T 90119

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72017

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage JOUVET

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

ANALYSE PHYSICO-CHIMIOUE

		311111 201
	Résultat	Limite de Qualité Méthode
Conductivité à 25°C (μS/cm)	56.1	EN 27888
pH à 20°C (Unités pH)	6.20	NF T 90008
pH aprês marbre (à 20°C) (Unités pH)	7.00	
Titre Alcalimétrique Complet (TAC) (°F)	1.7	ILB Méthod
T.A.C. après marbre (°F)	4.9	ILB Méthod
Titre Hydrotimétrique Total (THT) (°F)	1.6	Calculé
Titre Hydrotimétrique Permanent (THP) (°F)		Calculé
Silice (mg SiO2/1)	26.70	ILB Method
Oxygène dissous (mg 02/1)	8.3	EN 25813
Couleur (quantitatif) (Hazen)	<5	ILB Méthod
Résidu sec à 175-185°C (mg/l)	63.0	NF T 90029
Oxydabilité à chaud en milieu acide (mg 02/1) <0.5	ISO 8467
Turbidité (NTU)	<0.2	EN 27027
Titre Alcalimétrique (TA) (°F)	<0.1	ILB Méthod
Anhydride carbonique libre (mg CO2/1)	25.5	NF T 90011

Remarques et conclusions

Physico-chimie: Eau trés faiblement minéralisée.

Remarque : Les analyses SCV ont été confirmées par une double détermination.

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion :

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72017

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage JOUVET

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

ANNEXE - BILAN IONIQUE

	mg/1	meq/1
Chlorures	2.0	0.06
Nitrites	<0.050	<0.01
Nitrates	3.00	0.05
Sulfates	6.6	0.14
Hydrogénocarbonates (HCO3)	20.7	0.34
Carbonates (CO3)	0.00	<0.01
Phosphore total	0.08	_
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.59
	mg/1	meq/1
Ammonium	< 0.10	<0.01
Calcium ₌	4.50	0.22
Magnésium	1.10	0.09
Sodium	5.5	0.24
Potassium	0.8	0.02
Manganèse	<0.005	<0.01
Fer	0.008	< 0.01
Zinc	<0.030	<0.01
Aluminium	<0.005	<0.01
Cuivre	<0.002	< 0.01

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

L'ESTIVAL

Bulletin d'analyse

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND

SIAEP HAUT-LIVRADOIS 63220 ARLANC

Réf: 206816

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES
Captage L'ESTIVAL (CAP)

Captage

Réception au laboratoire :

24/08/2006 14:21:57

Prélèvement effectué le :

24/08/2006 11:00:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyses bactériologiques

Analyse	Résultat	Incert.	Limite de Qualité	Réalisé le	Méthode
© Coliformes Totaux	0 UFC/100 ml			24/08/2006	NF EN ISO 9308-1
© Escherichia coli	0 UFC/100 ml		x <= 20000	24/08/2006	NF EN ISO 9308-1
© Entérocoques	0 UFC/100 ml		x <= 10000	24/08/2006	NF EN ISO 7899-2
© Spore Bactérie Sulfito-réductrice	0 UFC/100 ml		x < 1	24/08/2006	NF EN 26461-2
© Dénombrement à 22°	10 UFC/ml			24/08/2006	NF EN ISO 6222
© Dénombrement à 37°	0 UFC/ml			24/08/2006	NF EN ISO 6222

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 1 de 6

A N P

ACCREDITATION № 1-1112 PORTEE COMMUNIQUEE SUR DEMANDE Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

ES DE MEDECINE CLERMONT-FERRAND

ET DE PHARMACIE CEDEX 01 - FRANCE - 28, PLACE HENRI TEL: 04 73 28 84 50

DUNANT - B.P. 38 FAX: 04 73 28 84 55

Bulletin d'analyse

(Suite.)

Réf: 206816

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage L'ESTIVAL (CAP)

Captage

Réception au laboratoire :

24/08/2006 14:21:57

Prélèvement effectué le :

24/08/2006 11:00:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyses chromatographiques

Analyse	Résultat	Incert.	Limite de Qualité	Réalisé le	Méthode
Hydrocarbures Polycyclique	s Aromatiques			30/08/2006	NF EN ISO 17993
- Fluoranthène	<0,001 µg/l				
 Benzo(b)fluoranthène 	<0,006 µg/l				
- Benzo(k)fluoranthène	<0,002 µg/l				
- Benzo(a)pyrène	<0,001 µg/l				
- Benzo(ghi)pérylène	<0,02 µg/l				
 Indeno(1,2,3-cd)pyrène 	<0,02 µg/l				
 Total des 6 subsances 	<0,020 µg/1				
© Solvant Chlorés Volatils				29/08/2006	Methode interne
- Benzène	<0,2 µg/l				
- 1,2-Dichloroéthane	<0,2 µg/l				
- Trichloroéthylène	<0,2 µg/l				
- 1,1,2,2-Tétrachloroéthylène	<0,2 µg/l				
 Tri+Tetra Chloréthylène 	<0,2 µg/l				
© Pesticides organoazotés				31/08/2006	NF EN ISO 10695
- Atrazine	<0,01 µg/l				
- Simazine	<0,01 µg/i				
- Propazine	<0,01 µg/l				
- Déséthylatrazine	<0,01 µg/l				
- Désisopropylatrazine	<0,01 µg/l				
- Cyanazine	<0,01 µg/l				
- Terbuthylazine	<0,01 µg/l				
- Terbuméton	<0,01 µg/l				
© Pesticides organophosphorés	•			04/09/2006	NF EN ISO 10695
- Dimethoate	<0,01 µg/l				
- EPN	<0,01 µg/l				
- Malathion	<0,01 µg/l				
- Monocrotophos	<0,01 µg/l				
- Parathion	<0,01 µg/l				
- Sulfotepp	<0,01 µg/l				
- TEPP	<0,01 µg/l				

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 2 de 6

cofrac

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

ET DE PHARMACIE CEDEX 01 - FRANCE - - 28, PLACE HENRI DUNANT TEL: 04 73 28 84 50 FAX: 04

DUNANT - B.P. 38 FAX: 04 73 28 84 55

NSTITUT LOUISE BLANQUET LABORATOIRE DE CONTRÔLE DES EAUX LABORATOIRE AGRÉÉ POUR LES ANALYSES HYDROLOGIQUES

Bulletin d'analyse (Suite.)

Réf: 206816

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage L'ESTIVAL (CAP)

Captage

Réception au laboratoire :

24/08/2006 14:21:57

Prélèvement effectué le :

24/08/2006 11:00:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Pesticides totaux calculés

<0,01 µg/l

05/09/2006 Calculé

28/08/2006 Méthode ILB

© Phényl-urées
- Diuron

<0,01 µg/l

- Isoproturon

<0,01 µg/l

- Linuron

<0,01 µg/l

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 3 de 6

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

ET DE PHARMACIE CEDEX 01 - FRANCE - 28, PLACE HENRI TEL: 04 73 28 84 50 DUNANT - B.P. 38 FAX: 04 73 28 84 55

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

Bulletin d'analyse

(Suite.)

Réf: 206816

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage L'ESTIVAL (CAP)

Captage

Réception au laboratoire :

24/08/2006 14:21:57

Prélèvement effectué le :

24/08/2006 11:00:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyses physico-chimiques

			Allalyses physico	-ciminques	•		
P	Analyse	Résultat		Incert.	Limite de Qualité	Réalisé le	Méthode
0	Conductivité à 25°C	52.8 µS/cm				24/08/2006	NF EN 27888
@	Couleur (quantitatif)	<5 Hazen				24/08/2006	NF EN ISO 7887
C	Calcium	3.90 mg/l				25/08/2006	NF EN ISO 7980
C	pHà20°C	6.00 Unités pH				24/08/2006	NF T 90-008
C	pH après marbre (à 20°C)	6.80 Unités pH				28/08/2006	NF T 90-008
C	Titre Alcalimétrique Complet (TAC)	1.7 °F				25/08/2006	Méthode ILB
C	T.A.C. après marbre	5.1 °F				28/08/2006	Méthode ILB
	Hydrogénocarbonates (HCO3)	21.00 mg/l				30/08/2006	Calculé
0	Titre Alcalimétrique (TA)	<0,1 °F				24/08/2006	Méthode ILB
	Carbonates (CO3)	0.00 mg/l				25/08/2006	Calculé
0	Magnésium	0.70 mg/l				25/08/2006	NF EN ISO 7980
	Titre Hydrotimétrique Total (THT) 1.00 °F				30/08/2006	Calculé
0	Turbidité	<0,2 NTU				24/08/2006	NF EN ISO 7027
©	Ammonium	<0,05 mg NH4/I			x <= 4,00	25/08/2006	NF EN ISO 11732
C	Sodium	5.1 mg/l			x <= 200,0	25/08/2006	NF T 90-019
©	Nitrites	<0,003 mg NO2/I				25/08/2006	NF EN ISO 13395
0	Nitrates	1.20 mg NO3/I			x <= 50	24/08/2006	NF EN ISO 10304-1
0	Chlorures	1.5 mg/l			x <= 200,0	24/08/2006	NF EN ISO 10304-1
©	Agents de surface anioniques	<0,1 mg SABM/I			x <= 50	28/08/2006	NF EN 903
©	Sulfates	4.9 mg/l			x <= 250,0	24/08/2006	NF EN ISO 10304-1
©	Potassium	0.6 mg/l				29/08/2006	NF T 90-019
©	Oxygène dissous	9.9 mg O2/I				24/08/2006	NF EN 25814
©	Fluorures	<0,05 mg/l				24/08/2006	NF EN ISO 10304-1
©	Indice Phénol	<0,025 mg/l			x <= 0,100	28/08/2006	XP T 90-109
	Cyanures totaux	<10 µg/l					NF EN ISO 14403
©	Indice Hydrocarbures	<0,1 mg/l			x <= 1,00		NF EN ISO 9377-2
0	Carbone Organique Total	0.70 mg C/l				31/08/2006	NF EN 1484
	Oxydabilité à chaud en milieu acide	<0,5 mg O2/l			x <= 10,0	24/08/2006	NF EN ISO 8467
	Anhydride carbonique libre	26.6 mg CO2/I				24/08/2006	NF T 90-011

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Remarques concernant ce rapport:

Responsable de la diffusion : ALAMÉ Josette

Page 4 de 6

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE SUR DEMANDE

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

DE PHARMACIE CEDEX 01 - FRANCE -

l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet. 28, PLACE HENRI TEL: 04 73 28 84 50

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les

objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de

la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par

DUNANT FAX: 04 73 28 84 55

Bulletin d'analyse

(Suite.)

Réf: 206816

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage L'ESTIVAL (CAP)

Captage

Réception au laboratoire :

24/08/2006 14:21:57

Prélèvement effectué le :

24/08/2006 11:00:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyses de radioactivité (analyses sous traitées)

Analyse	Resultat	Incert.	Limite de Qualité	Réalisé le	Méthode
Activité Alpha Globale	<0,02 Bq/L			08/09/2006	NF M 60-801
Activité Beta Globale	<0,06 Bq/L			08/09/2006	NF M 60-800
Activité volumique Tritium	<9,00 Bq/L			08/09/2006	NF M 60-802-1
Dose Totale Indicative	<0,1 mSv/an			14/09/2006	ILB Méthode
		Mesures sur le terrain			

Α	nalyse	Résultat	Incert.	Limite de Qualité	Réalisé le	Méthode
	Aspect (qualitatif)	Normal			24/08/2006	Méthode ILB
	Hydrogène sulfuré	Normal			24/08/2006	Méthode ILB
	Température de l'eau	10.6 °C		x <= 25,0	24/08/2006	Méthode ILB
	Température de l'air	15.0 °C			24/08/2006	Méthode ILB
©	pH	7.20 Unités pH			24/08/2006	NF T 90-008

Analyses de traces inorganiques

	Analyses de traces inorganiques						
Α	nalyse	Résultat	Incert.	Limite de Qualité	Réalisé le	Méthode	
C	Aluminium	0.006 mg/l			28/08/2006	NF EN ISO 11885	
C	Antimoine	<0,005 mg/l			25/08/2006	NF EN ISO 17294-2	
0	Arsenic	<0,005 mg/l		x <= 0,100	25/08/2006	NF EN ISO 15586	
O	Baryum	<0,05 mg/l		x <= 1,000	28/08/2006	NF EN ISO 11885	
C	Bore	<0,05 mg/l			28/08/2006	NF EN ISO 11885	
C	Cadmium	<0,0005 mg/l		x <= 0,0050	25/08/2006	NF EN ISO 17294-2	
0	Chrome total	<0,002 mg/l		x <= 0,050	25/08/2006	NF EN ISO 11885	
©	Cuivre	<0,002 mg/l			25/08/2006	NF EN ISO 11885	
O	Fer	<0,005 mg/l			25/08/2006	NF EN ISO 11885	
0	Manganèse	<0,005 mg/l			25/08/2006	NF EN ISO 11885	
©	Mercure	<0,0002 mg/l		x <= 0,0010	28/08/2006	NF EN 1483	
$^{\circ}$	Nickel	<0,005 mg/l			25/08/2006	NF EN ISO 11885	
0	Plomb	<0,005 mg/l		x <= 0,050	29/08/2006	NF EN ISO 17294-2	
\bigcirc	Sélénium	<0,005 mg/l		x <= 0,010	25/08/2006	NF EN ISO 15586	
0	Zinc	<0,030 mg/l		x <= 5,000	25/08/2006	NF EN ISO 11885	

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 5 de 6

63001

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE SUR DEMANDE

DE

CLERMONT-FERRAND

MEDECINE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole C sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

DE PHARMACIE 28, CEDEX 01 - FRANCE -

PLACE HENRI DUNANT TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

NSTITUT LOUISE BLANQUET LABORATOIRE DE CONTRÔLE DES EAUX LABORATOIRE AGRÉÉ POUR LES ANALYSES HYDROLOGIQUES

Bulletin d'analyse (Suite.)

Réf: 206816

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de MEDEYROLLES Captage L'ESTIVAL (CAP)

Captage

Réception au laboratoire :

24/08/2006 14:21:57

Prélèvement effectué le :

24/08/2006 11:00:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Balance Ionique

	•	
Anions	mg/l	mEq/l
Carbonates (CO3)	0.00	0,00
Chlorures	1.5	0,04
Fluorures	<0.05	0,00
Hydrogénocarbonates (HCO3)	21.00	0,34
Nitrates	1.20	0,02
Nitrites	<0.003	0,00
Sulfates	4.9	0,10

Total: 0,51 mEq/l

Cations	mg/l	mEq/l
Aluminium	0.006	0,00
Ammonium	<0,05	0,00
Baryum	<0,05	0,00
Calcium	3.90	0,19
Cuivre	<0,002	0,00
Fer	<0,005	0,00
Magnésium	0.70	0,06
Manganèse	<0,005	0,00
Plomb	<0,005	0,00
Potassium	0.6	0,02
Sodium	5.1	0,22
Zinc	<0,030	0,00

Total: 0,49 mEq/l

Balance:

1,55%

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette Responsable de la diffusion : ALAMÉ Josette

Page 6 de 6

Dlaus

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 124674

Produit : Eau de consommation humaine au point de mise en distribution (Code de la Santé Publique -

article R 1321-1 et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage L'ESTIVAL (CAP)

DANS REGARD

Réception au laboratoire le 14 Septembre 2004 à 13h55

Prélèvement effectué le

14 Septembre 2004 à 10h15 par BASSO S., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

2222	Résultat	Incert.	Limite de Qualité	Methode
	Resultat			Méthode ILB
Aspect (qualitatif)	Normal			
	Non Déterminé			Méthode ILB
Chlore résiduel total (mg/l)				Méthode ILB
Chlore résiduel libre (mg/l)	Non Déterminé			
	Non Déterminé			Méthode ILB
Bioxyde de chlore (mg Cl2/1)			0.0 - 200.0	Méthode ILB
Chlorite (µg/l)	Non Déterminé			Méthode ILB
	8.0		0.0 - 25.0	Methode IDD
Température de l'eau (°C)	***			

DETERMINATIONS PHYSICO-CHIMIQUES

				Limite de Qualité	Méthode
		Résultat	Incert.	6.50 - 9.00	NF T 90-008
©	pH à 20°C (Unités pH)	5.90 🎿		6.50 - 9.00	NF EN 27888
	Conductivité à 25°C (µS/cm)	55.0			NF EN ISO 7027
	Turbidité (NTU)	<0.2		0.0 - 0.5	NF EN ISO 11732
	Ammonium (mg NH4/1)	<0.05		0.00 - 0.10	
		<0.003		0.000 - 0.500	NF EN ISO 13395
	Nitrites (mg NO2/1)	1.40		0.0 - 50.0	NF EN ISO 13395
	Nitrates (mg NO3/1)	1.7			NF EN ISO 10304-1
	Chlorures (mg/l)	4.9		0.0 - 250.0	NF EN ISO 10304-1
	Sulfates (mg/l)	2.4			NF T 90-003
	Dureté (degré F)	1.7			Flux continu
	Titre Alcalimétrique Complet (TAC) (°F)				NF EN 1484
0	Carbone Organique Total (mg C/1)	0.40			

Remarques et conclusions

Physico-chimie : Eau de pH acide.

Clermont-Ferrand, le 17 Septembre 2004

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

ACCREDITATION I° 1-1112 ORTÉE COMMUNIQUÉE

Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet. PLACE HENRI DUNANT PHARMACIE MÉDECINE ET DE FACULTÉS FAX: 04 73 28 84 55 TEL: 04 73 28 84 50 CEDEX 01 - FRANCE -CLERMONT-FERRAND

Page 1 / 2

2182. 204

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 124674

Produit : Eau de consommation humaine au point de mise en distribution (Code de la Santé Publique -

article R 1321-1 et suivants)

Origine de prélèvement Commune de MEDEYROLLES

Captage L'ESTIVAL (CAP)

DANS REGARD

Réception au laboratoire le 14 Septembre 2004 à 13h55

Prélèvement effectué le 14 Septembre 2004 à 10h15 par BASSO S., DDASS 63

ANALYSES BACTERIOLOGIQUES

		Résultat	Incert.	Limite de Qualité	Méthode
				0	NF EN ISO 9308-1
	Coliformes Totaux (UFC/100 ml)	0		0	NF EN ISO 9308-1
0	Escherichia coli (UFC/100 ml)	0		0	NF EN ISO 7899
	Entérocoques (UFC/100 ml)	0		0	NF EN 26461-2
©	Spore Bactérie Sulfito-réductrice (UFC/100	Non Déterminé		v	
1	ml)				NF EN ISO 6222
©	Dénombrement à 37° (UFC/ml)	0			NF EN ISO 6222
e.	Dénombrement à 22° (UFC/ml)	16			111 111 100 0222

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne les paramètres analysés.

Clermont-Ferrand, le 17 Septembre 2004

Analyse validée par : ALAME Josette

Le Responsable de la diffusion :

Nº 1-1112 PORTEE COMMUNIQUÉE

Remarques concernant ce rapport:

Seuls les paramètres marquès du symbole @ sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation

Le nombre de pages est indiqué au bas de chaque feuillet. PLACE HENRI DUNANT PHARMACIE MÉDECINE ET DE FACULTÉS DE FAX: 04 73 28 84 55 TEL: 04 73 28 84 50 CEDEX 01 - FRANCE -CLERMONT-FERRAND

RESULTATS D'ANALYSE DE TYPE B3C3C4bc

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72018

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage L'ESTIVAL (CAP)

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS BACTERIOLOGIQUES

	Résultat	Limite de Qualité	Méthod∈
Coliformes Totaux (UFC/100 ml)	0	0 - 50000	NF T 904
Coliformes Thermotolérants (UFC/100 ml)	. 0	0 - 20000	NF T 904
Streptocoques Fécaux (UFC/100 ml)	0	<10000	NF T 904
Pseudomonas aeruginosa (UFC/100 ml)	Non Déterminé		ILB Méth
Dénombrement à 37° (UFC/ml)	0		NF T 904
Dénombrement à 22° (UFC/ml)	3		NF T 904
Spore bactérie anaérobie sulfito réduct. (U	JFC/20m1) 0		NF T 904

DETERMINATIONS	REALISEES PAR LE PRELEVEUR,	SUR LE TERRAIN	
	Résultat	Limite de Qualité	Méthode
Odeur (qualitatif)	Sans odeur	•	
Saveur (qualitatif)	Sans saveur		
Température de l'eau (°C)	8.0	0.0 - 25.0	NF T 901
Température de l'air (°C)	Non Déterminé		NF T 901
Chlore résiduel total (mg/l)	Non Déterminé		
Chlore résiduel libre (mg/l)	Non Déterminé		
Bioxyde de chlore (mg Cl2/l)	Non Déterminé		
Chlorite (μg/l)	Non Déterminé		
Hydrogène sulfuré	Absence		ILB Métho

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Clermont-Ferrand, le 24 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusic

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement

1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72018

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage L'ESTIVAL (CAP)

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIOUES (type C4b)

			 \ 44	,	
		Résultat		Limite de Qualité	Méthode
	Cadmium (mg/l)	<0.0005		0.0000 - 0.0050	NF T 901]
	Plomb (mg/l)	<0.005		0.000 - 0.050	NF T 9011
	HPA (Hydrocarbures Polycycliques Aromatiques e	m µg/1)			
'n	Fluoranthène (μg/l)	<0.001			NFT90115
4	Benzo (3,4) Fluoranthène (μg/l)	<0.010			NFT90115
7	Benzo (11,12) Fluoranthène (μg/l)	<0.005			NFT90115
ø	Benzo (3,4) Pyrène (μg/1)	<0.001			NFT90115
k	Benzo (1,12) Pérylène (μg/l)	<0.020			NFT90115
k	Indéno (1,2,3-cd) Pyrène (μg/l)	<0.020			NFT90115
*	Total (μg/1)	0.000		0.000 - 1.000	NFT90115

Clermont-Ferrand, le 24 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72018

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage L'ESTIVAL (CAP)

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIOUES (type C4c)

		DETERMINATIONS	THISICO-CHIMIQ	ions (rlbe	C4C)	
			Résultat		Limite de Qualité	Méthode
	Arsenic (mg/l)		<0.005		0.000 - 0.100	NF T 901
	Chrome total (mg/l)		<0.002		0.000 - 0.050	NF T 901
	Mercure (mg/l)	*	<0.0002		0.0000 - 0.0010	ILB Meth
	Sélénium (mg/l)		<0.005		0.000 - 0.010	NF T 901
	Cyanures totaux (mg/1)		<0.01		0.000 - 0.050	NF T 901
	Solvants Halogénés Volatils	S				
7	* Chloroforme (μg/l)		<0.01			ILB Méth
7	* 1,1,1-Trichloroéthane (μg/l	1)	<0.01			ILB Méth
7	* Tétrachlorure de carbone (μ	μg/1)	<0.01			ILB Méth
7	* Trichloroéthylène (μg/l)		<0.01			ILB Méth
,	* Bromodichlorométhane (μg/l))	<0.01	(4)		ILB Méth
ł	* cis-1,3-Dichloropropène (μg	.g/1)	<0.01			ILB Méth
k	* trans-1,3-Dichloropropène ((μg/1)	<0.01			ILB Méth
4	* 1,1,2-Trichloroéthane (μg/l	1)	<0.05			ILB Méth
1	* Tétrachloroéthylène (μg/l)		<0.01			ILB Méth
*	* Chlorodibromométhane (μg/l))	<0.01			ILB Méth
*	* Chlorobenzène (μg/l)		<1			ILB Méth
*	* Bromoforme (μg/l)		<0.01			ILB Méth
*	* 1,1,2,2-Tétrachloroéthane ((μg/1)	<0.01			ILB Métho
*	* 1,3-Dichlorobenzène (μg/l)		<0.05			ILB Méth
*	* 1,4-Dichlorobenzène (μg/l)		<0.05			ILB Métho
*	* 1,2-Dichlorobenzène (μg/l)		<0.05			ILB Métho
	Pesticides Organoazotés (ty	ype triazine)				
*	* Atrazine (μg/l)		<0.01			
*	* Simazine (μg/1)		<0.01			
*	* Propazine (μg/l)		<0.01			
*	* Déséthylatrazine (μg/l)		<0.01			

Clermont-Ferrand, le 24 Novembre 2000

* Désisopropylatrazine (μg/l)

Analyse validée par : CLEMENT Bruno

< 0.01

Le Responsable de la diffusic CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72018

Produit : Eau de consonmation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage L'ESTIVAL (CAP)

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS	PHISICO-CHIMIQUES	(type	C4C)	(SULTE)	
	Dácultat			Atifrun do Ourlita	Ma

	Résultat	, 22	Limite de Qualité	Méthode
Pesticides organochlorés				
* HCB (μg/l)	<0.01			
* alpha HCH (μg/l)	<0.02			
* Lindane (μg/l)	<0.02			
* Heptachlore (μg/l)	<0.02			
* Aldrin (μg/l)	<0.02			
* Heptachlore epoxide (μg/l)	<0.02			
* Endosulfan (μg/l)	<0.02			
* Dieldrin (μg/l)	<0.02			
* Endrin (μg/l)	<0.02			
* DDT pp' (μg/l)	<0.02			
* В НСН (µg/l)	<0.02			
* DDE pp' (μg/l)	<0.02			
* DDD op' (μg/l)	<0.02			
* DDD pp' (μg/l)	<0.02			
Pesticides organophosphorés				
* Dimethoate (μg/l)	<0.01			
* EPN (μg/l)	<0.01			
* Malathion (μg/l)	<0.01		147	
* Monocrotophos (μg/l)	<0.01			
* Parathion (μg/l)	<0.01			
* Sulfotepp (μg/l)	<0.01		_	
* TEPP (μg/1)	<0.01			

Clermont-Ferrand, le 24 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusio CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72018

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage L'ESTIVAL (CAP)

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W, DDASS 63

	ANALYSE DES ANIONS		
	Résultat	Limite de Qualité	Méthode
Chlorures (mg/l)	1.6		Std Metl
Nitrites (mg NO2/1)	<0.050		NF T 900
Nitrates (mg NO3/1)	1.60	0.0 - 50.0	NF T 900
Sulfates (mg/l)	5.5	0.0 - 250.0	ISO 1030
Hydrogénocarbonates (HCO3) (mg/1)	17.1		Calculé
Carbonates (CO3) (mg/1)	0.00		Calculé
Phosphore total (mg P205/1)	0.08		NF T 90C
Fluorures (mg/l)	<0.05		ISO 1035
	ANALYSE DES CATIONS		
	Résultat	Limite de Qualitë	Méthode
Ammonium (mg NH4/1)	<0.10	0.00 - 4.00	ISO 7150
Calcium (mg/l)	3.10		Std Meth
Magnésium (mg/l)	0.80		Std Meth
Sodium (mg/l)	5.0		NF T 900
Potassium (mg/l)	0.5		NF T 900
Manganèse (mg/1)	<0.005		NF T 901
Fer (mg/1)	0.009		Std Meth
Zinc (mg/l)	<0.030	0.000 - 5.000	NF T 901
Aluminium (mg/l)	0.021		NF T 901
Cuivre (mg/l)	<0.002		NF T 901

Clermont-Ferrand, le 24 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusio CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72018

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage L'ESTIVAL (CAP)

CAPTAGE

Réception au laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le 24 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANALYSE PHYSICO-CHIMIOUE

	imibe inibico-chimigos		Į.
	Résultat	Limite de Qualité	Méthode
Conductivité à 25°C (µS/cm)	44.6	•	EN 27888
рН à 20°C (Unités рН)	6.00		NF T 900
pH après marbre (à 20°C) (Unités pH)	6.90		
Titre Alcalimétrique Complet (TAC) (°F)	1.4		ILB Méth
T.A.C. après marbre (°F)	5.5		ILB Méth
Titre Hydrotimétrique Total (THT) (°F)	1.1		Calculé
Titre Hydrotimétrique Permanent (THP) (°F)	-		Calculé
Silice (mg Si02/1)	23.50		ILB Metho
Oxygène dissous (mg 02/1)	6.4		EN 25813
Couleur (quantitatif) (Hazen)	<5		ILB Méthc
Résidu sec à 175-185°C (mg/l)	51.0		NF T 9002
Oxydabilité à chaud en milieu acide (mg 02/1)	<0.5		ISO 8467
Turbidité (NTV)	<0.2		EN 27027
Titre Alcalimétrique (TA) (°F)	<0.1		ILB Méthc
Anhydride carbonique libre (mg CO2/1)	34.7		NF T 9001

Remarques et conclusions

Physico-chimie : Eau extrêmement peu minéralisée.

Clermont-Ferrand, le 24 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusio

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement I.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72018

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MEDEYROLLES

Captage L'ESTIVAL (CAP)

CAPTAGE

Réception àu laboratoire le 24 Octobre 2000 à 16h52

Prélèvement effectué le

24 Octobre 2000 par DE ESCOBAR W, DDASS 63

ANNEXE - BILAN IONIQUE

	mg/l	meq/1
Chlorures	1.6	0.05
Nitrites	<0.050	<0.01
Nitrates -	1.60	0.03
Sulfates	5.5	0.11
Hydrogénocarbonates (HCO3)	17.1	0.28
Carbonates (CO3)	0.00	<0.01
Phosphore total	0.08	_
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.47
	mg/1	meq/1
Ammonium	<0.10	<0.01
Calcium	3.10	0.15
Magnésium	0.80	0.07
Sodium	5.0	0.22
Potassium	0.5	0.01
Manganèse	<0.005	<0.01
Fer	0.009	<0.01
Zinc	<0.030	<0.01
Aluminium	0.021	<0.01
Cuivre	<0.002	<0.01
TOTAL CATIONS		0.45

Clermont-Ferrand, le 24 Novembre 2000

Analyse validée par : CLEMENT Bruno Le Responsable de la diffusion «CLEMENT Bruno

Commune de SAINT ALYRE D'ARLANC

LES MONTILLES

Bulletin d'analyse

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND SIAEP HAUT-LIVRADOIS 63220 ARLANC

Réf: 206818

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

Captage

Réception au laboratoire :

24/08/2006 14:10:36

Prélèvement effectué le :

24/08/2006 09:40:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyses bactériologiques

A	nalyse	Résultat	Incert.	Limite de Qualité	Réalisé le	Méthode
C	Coliformes Totaux	3 UFC/100 ml			24/08/2006	NF EN ISO 9308-1
C	Escherichia coli	3 UFC/100 ml		x <= 20000	24/08/2006	NF EN ISO 9308-1
C	Entérocoques	2 UFC/100 ml		x <= 10000	24/08/2006	NF EN ISO 7899-2
C	Spore Bactérie Sulfito-réductrice	0 UFC/100 ml		x < 1	24/08/2006	NF EN 26461-2
C	Dénombrement à 22°	15 UFC/ml			24/08/2006	NF EN ISO 6222
C	Dénombrement à 37°	0 UFC/ml			24/08/2006	NF EN ISO 6222

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette Responsable de la diffusion : ALAMÉ Josette

Page 1 de 6

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND ET DE PHARMACIE CEDEX 01 - FRANCE - 28, PLACE HENRI TEL: 04 73 28 84 50 DUNANT - B.P. 38 FAX: 04 73 28 84 55

Bulletin d'analyse

(Suite.)

Réf: 206818

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

Captage

Réception au laboratoire :

24/08/2006 14:10:36

Prélèvement effectué le :

24/08/2006 09:40:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyses chromatographiques

Analyse	Résultat	Incert.	Limite de Qualité	Réalisé le	Méthode
Hydrocarbures Polycycliques	s Aromatiques			30/08/2006	NF EN ISO 17993
- Fluoranthène	<0,001 µg/l				
- Benzo(b)fluoranthène	<0,006 µg/l				
- Benzo(k)fluoranthène	<0,002 µg/l				
- Benzo(a)pyrène	<0,001 µg/l				
 Benzo(ghi)pérylène 	<0,02 µg/l				
 Indeno(1,2,3-cd)pyrène 	<0,02 μg/l				
- Total des 6 subsances	<0,020 µg/l				
© Solvant Chlorés Volatils				29/08/2006	Methode interne
- Benzène	<0,2 µg/l				
 1,2-Dichloroéthane 	<0,2 µg/l				
 Trichloroéthylène 	<0,2 µg/l				
 1,1,2,2-Tétrachloroéthylène 	<0,2 µg/l				
 Tri+Tetra Chloréthylène 	<0,2 µg/l				
© Pesticides organoazotés				31/08/2006	NF EN ISO 10695
- Atrazine	<0,01 µg/l				
- Simazine	<0,01 µg/l				
- Propazine	<0,01 µg/l				
- Déséthylatrazine	<0,01 µg/l				
 Désisopropylatrazine 	<0,01 µg/l				
- Cyanazine	<0,01 µg/l				
 Terbuthylazine 	<0,01 µg/l				
- Terbuméton	<0,01 µg/l				
© Pesticides organophosphorés	5			04/09/2006	NF EN ISO 10695
- Dimethoate	<0,01 µg/l				
- EPN	<0,01 µg/l				
- Malathion	<0,01 µg/l				
- Monocrotophos	<0,01 µg/l				
- Parathion	<0,01 µg/l				
- Sulfotepp	<0,01 µg/l				
- TEPP	<0,01 µg/l				

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 2 de 6

cofrac ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE ESSAIS SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

DE MEDECINE **CLERMONT-FERRAND**

PHARMACIE CEDEX 01 - FRANCE -

PLACE HENRI DUNANT 28, TEL: 04 73 28 84 50

FAX: 04 73 28 84 55

I NSTITUT LOUISE BLANQUET LABORATOIRE DE CONTRÔLE DES EAUX LABORATOIRE AGRÉÉ POUR LES ANALYSES HYDROLOGIQUES

Bulletin d'analyse (Suite.)

Réf: 206818

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

Captage

Réception au laboratoire :

24/08/2006 14:10:36

Prélèvement effectué le :

24/08/2006 09:40:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Pesticides totaux calculés

<0,01 µg/l

05/09/2006 Calculé

28/08/2006 Méthode ILB

© Phényl-urées

<0,01 µg/l

DiuronIsoproturon

<0,01 µg/i

- Linuron

<0,01 µg/l

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 3 de 6

cofrac

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND ET DE PHARMACIE CEDEX 01 - FRANCE -

- 28, PLACE HENRI DUNANT TEL: 04 73 28 84 50 FAX: 04

DUNANT - B.P. 38 FAX: 04 73 28 84 55

Remarques concernant ce rapport!

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

NSTITUT LOUISE BLANQUET LABORATOIRE DE CONTRÔLE DES EAUX LABORATOIRE AGRÉÉ POUR LES ANALYSES HYDROLOGIQUES

Bulletin d'analyse

(Suite.)

Réf: 206818

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

Captage

Réception au laboratoire :

24/08/2006 14:10:36

Prélèvement effectué le :

24/08/2006 09:40:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyses physico-chimiques

			, many occ priny cros				
Α	nalyse	Résultat		Incert.	Limite de Qualité	Réalisé le	Méthode
C	Conductivité à 25°C	55.2 μS/cm				24/08/2006	NF EN 27888
C	Couleur (quantitatif)	<5 Hazen				24/08/2006	NF EN ISO 7887
C	Calcium	3.30 mg/l				25/08/2006	NF EN ISO 7980
0	pH à 20°C	5.80 Unités pH				24/08/2006	NF T 90-008
C	pH après marbre (à 20°C)	6.60 Unités pH				28/08/2006	NF T 90-008
C	Titre Alcalimétrique Complet (TAC)	1.8 °F				25/08/2006	Méthode ILB
C	T.A.C. après marbre	6.7 °F				28/08/2006	Méthode ILB
	Hydrogénocarbonates (HCO3)	22.00 mg/l				30/08/2006	Calculé
0	Titre Alcalimétrique (TA)	<0,1 °F				24/08/2006	Méthode ILB
	Carbonates (CO3)	0.00 mg/l				25/08/2006	Calculé
C	Magnésium	1.50 mg/l				25/08/2006	NF EN ISO 7980
	Titre Hydrotimétrique Total (THT)) 1.00 °F				30/08/2006	Calculé
0	Turbidité	0.4 NTU				24/08/2006	NF EN ISO 7027
0	Ammonium	<0,05 mg NH4/I			x <= 4,00	25/08/2006	NF EN ISO 11732
0	Sodium	4.0 mg/l			x <= 200,0	25/08/2006	NF T 90-019
O	Nitrites	<0,003 mg NO2/l				25/08/2006	NF EN ISO 13395
0	Nitrates	2.40 mg NO3/I			x <= 50	24/08/2006	NF EN ISO 10304-1
O	Chlorures	1.4 mg/l			x <= 200,0	24/08/2006	NF EN ISO 10304-1
0	Agents de surface anioniques	<0,1 mg SABM/l			x <= 50	28/08/2006	NF EN 903
©	Sulfates	4.5 mg/l			x <= 250,0	24/08/2006	NF EN ISO 10304-1
O	Potassium	1.5 mg/l				25/08/2006	NF T 90-019
O	Oxygène dissous	9.1 mg O2/I				24/08/2006	NF EN 25814
O	Fluorures	<0,05 mg/l				24/08/2006	NF EN ISO 10304-1
C	Indice Phénol	<0,025 mg/l			x <= 0,100	28/08/2006	XP T 90-109
	Cyanures totaux	<10 µg/l				31/08/2006	NF EN ISO 14403
0	Indice Hydrocarbures	<0,1 mg/l			x <= 1,00	01/09/2006	NF EN ISO 9377-2
0	Carbone Organique Total	0.30 mg C/l				31/08/2006	NF EN 1484
©	Oxydabilité à chaud en milieu acide	<0,5 mg O2/I			x <= 10,0	24/08/2006	NF EN ISO 8467
	Anhydride carbonique libre	39.4 mg CO2/I				24/08/2006	NF T 90-011

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 4 de 6

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

DE MEDECINE **CLERMONT-FERRAND**

ET DE PHARMACIE CEDEX 01 -FRANCE

PLACE HENRI 28, TEL: 04 73 28 84 50

DUNANT FAX: 04 73 28 84 55

NSTITUT LOUISE BLANQUET LABORATOIRE DE CONTRÔLE DES EAUX LABORATOIRE AGRÉÉ POUR LES ANALYSES HYDROLOGIQUES

Bulletin d'analyse (Suite.)

Réf: 206818

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

Captage

Réception au laboratoire :

24/08/2006 14:10:36

Prélèvement effectué le :

24/08/2006 09:40:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyses de radioactivité (analyses sous traitées)

Analyse	Résultat	Incert.	Limite de Qualité	Réalisé le	Méthode
Activité Alpha Globale	<0,02 Bq/L				NF M 60-801
Activité Beta Globale	<0,06 Bq/L				NF M 60-800
Activité volumique Tritium	<8,90 Bg/L				NF M 60-802-1
Dose Totale Indicative	<0,1 mSv/an				ILB Méthode
		Mesures sur le terrain		14/03/2000	ico wethode

e Méthode
6 Méthode ILB
6 NF T 90-008
0

Analyses de traces inorganiques

	a many and the state of morganity and of					
A	nalyse	Résultat	Incert.	Limite de Qualité	Réalisé le	Méthode
C	Aluminium	0.032 mg/l			28/08/2006	NF EN ISO 11885
C	Antimoine	<0,005 mg/l			25/08/2006	NF EN ISO 17294-2
C	Arsenic	0.006 mg/l		x <= 0,100	25/08/2006	NF EN ISO 15586
C	Baryum	<0,05 mg/l		x <= 1.000	28/08/2006	NF EN ISO 11885
C	Bore	<0,05 mg/l		·	28/08/2006	NF EN ISO 11885
0	Cadmium	<0,0005 mg/l		x <= 0,0050		NF EN ISO 17294-2
0	Chrome total	<0,002 mg/l		x <= 0.050		NF EN ISO 11885
0	Cuivre	0.008 mg/l				NF EN ISO 11885
©	Fer	0.026 mg/l			25/08/2006	NF EN ISO 11885
C	Manganèse	<0,005 mg/l				NF EN ISO 11885
O	Mercure	<0,0002 mg/l		x <= 0.0010		NF EN 1483
©	Nickel	<0,005 mg/l		X - 0,0010	25/08/2006	NF EN ISO 11885
C	Plomb	<0,005 mg/l		x <= 0,050		NF EN ISO 17294-2
©	Sélénium	<0,005 mg/l		x <= 0,010		NF EN ISO 15586
©	Zinc	<0,030 mg/l		x <= 5.000		NF EN ISO 13306

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 5 de 6

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE ESSAIS SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

ET DE PHARMACIE CEDEX 01 - FRANCE -

28, PLACE HENRI TEL: 04 73 28 84 50

DUNANT FAX: 04 73 28 84 55

NSTITUT LOUISE BLANQUET LABORATOIRE DE CONTRÔLE DES EAUX LABORATOIRE AGRÉÉ POUR LES ANALYSES HYDROLOGIQUES

Bulletin d'analyse

(Suite.)

Réf: 206818

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

Captage

Réception au laboratoire :

24/08/2006 14:10:36

Prélèvement effectué le :

24/08/2006 09:40:00 par CHABAT G., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Balance Ionique

mEq/I
0,00
0,04
0,00
0,36
0,04
0,00
0,09

Total:

0,54 mEq/l

Cations	mg/l	mEq/l
Aluminium	0.032	0,00
Ammonium	<0,05	0,00
Baryum	<0,05	0,00
Calcium	3.30	0,16
Cuivre	0.008	0,00
Fer	0.026	0,00
Magnésium	1.50	0,12
Manganèse	<0,005	0,00
Plomb	<0,005	0,00
Potassium	1.5	0,04
Sodium	4.0	0,17
Zinc	<0,030	0,00

Total:

0,51 mEq/l

Balance:

2,42%

Clermont-Ferrand, le 20/09/2006

Analyse validée par : ALAMÉ Josette Responsable de la diffusion : ALAMÉ Josette

Page 6 de 6

Mone

RAPPORT D'ANALYSE

Demandeur de l'analyse :
DDASS DU PUY DE DOME
Service Santé Environnement
60, Avenue de l'Union Soviétique
63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 88103

Arsenic (mg/l)

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

Captage

Réception au laboratoire le 28 Mars 2002 à 15h47

Prélèvement effectué le

28 Mars 2002 à 14h05 par PEYRAUD S., INSTITUT LOUISE BLANQUET

ANALYSE DE METAUX

Résulta

Incert.

Limite de Qualité

Méthode

0.007

0.000 - 0.100 NF T 90-119

Remarques et conclusions

Remarque : Echantillon conforme en ce qui concerne les paramètres analysés.

Clermont-Ferrand, le 5 Avril 2002 -

Analyse validée par : ALAME Josette

Le Responsable de la diffusion ALAME Josette

cofrac ESSAIS

ACCREDITATION
N° 1-1112
PORTÉE COMMUNIQUÉE
SUR DEMANDE

Remaraues concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa fonne integrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accreditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38
63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50 FAX 04 73 28 84 55

Page 1 / 1

RESULTATS D'ANALYSE DE TYPE B3C3C4bc

Demandeur de l'analyse : DOASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72026

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

CAPTAGE

Réception au laboratoire le 26 Octobre 2000 à 16h59

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS BACTERIOLOGIQUES

	Rēsultat	Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	12	0 - 50000	NF T 904.
Coliformes Thermotolérants (UFC/100 ml)	12	0 - 20000	NF T 904.
Streptocoques Fécaux (UFC/100 ml)	4	<10000	NF T 904.
Pseudomonas aeruginosa (UFC/100 ml)	Non Déterminé		ILB Méth
Dénombrement à 37° (UFC/ml)	0		NF T 9040
Dénombrement à 22° (UFC/ml)	13		NF T 9040
Spore bactérie anaérobie sulfito réduct. (U	FC/20ml) 0		NF T 904.

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat		Limite de Qualité	Méthode
Odeur (qualitatif)	Sans odeur			
Saveur (qualitatif)	Sans saveur			20 K
Température de l'eau (°C)	8.6		0.0 - 25.0	NF T 901
Température de l'air (°C)	Non Déterminé			NF T 9010
Chlore résiduel total (mg/l)	Non Déterminé	*		
Chlore résiduel libre (mg/l)	Non Déterminé			
Bioxyde de chlore (mg C12/1)	Non Déterminé			
Chlorite (µg/l)	Non Déterminé			
Hydrogène sulfuré	Absence			ILB Méthe

Remarques et conclusions

Bactériologie : Echantillon contaminé. Eau non potable.

4 7 W/4 W 323 Franchizer: W. Y. West 45 30 5

Nº 5 35%

Clermont-Ferrand, le 14 Novembre 2000

Analyse validée par :

CLEMENT Bruno

Le Responsable de la diffusio 4 - 9.5

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72026

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

CAPTAGE

Réception au laboratoire le 26 Octobre 2000 à 16h59

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4b)

			Z (-1E)	
		Résultat	Limite de Qualité	Méthode
	Cadmium (mg/l)	<0.0005	0.0000 - 0.0050	NF T 9011
	Plomb (mg/l)	<0.005	0.000 - 0.050	NF T 9011
	HPA (Hydrocarbures Polycycliques Aromati	ques en µg/l)		
7	Fluoranthēne (μg/l)	<0.001		NFT90115
7	Benzo (3,4) Fluoranthène (μg/l)	<0.010		NFT90115
+	Benzo (11,12) Fluoranthène (μg/l)	<0.005		NFT90115
4	Benzo (3,4) Pyrène (μg/l)	<0.001		NFT90115
4	Benzo (1,12) Pérylène (μg/l)	<0.020		NFT90115
4	Indéno (1,2,3-cd) Pyrèπe (μg/l)	<0.020		NFT90115
4	Total (μg/l)	0.000	0.000 - 1.000	NFT90115

Clermont-Ferrand, le 14 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusio

the to 32 3

 Melada \$ 3 M B # 20115 W 1907115 M. 180715 No the same 11.1161.2

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72026

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

CAPTAGE

Réception au laboratoire le 26 Octobre 2000 à 16h59

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS DIVISION SHIPS

	DETERMINATIONS	PHYSICO-CHIM	1IQUES	(type	C4c)	
		Résultat		,	Limite de Qualité	Méthode
Arsenic (mg/l)		0.006			0.000 - 0.100	NF T 9011
Chrome total (mg/l)		<0.002			0.000 - 0.050	NF T 9011
Mercure (mg/l)		<0.0002			0.0000 - 0.0010	ILB Metho
Sélénium (mg/l)		<0.005			0.000 - 0.010	NF T 9011
Cyanures totaux (mg/l)		<0.01			0.000 - 0.050	NF T 9016
Solvants Halogénés Volatils	S					
* Chloroforme (μg/l)		0.40				ILB Métho
* 1,1,1-Trichloroéthane (μg/)	*	<0.01				ILB Mēthc
* Tétrachlorure de carbone (,	μg/1)	<0.01				ILB Méthc
* Trichloroéthylène (μg/l)		<0.01				ILB Méthc
* Bromodichlorométhane (μg/l)		<0.01				ILB Méthc
* cis-1,3-Dichloropropène (μο		<0.01				ILB Méthc
* trans-1,3-Dichloropropène ((μg/l)	<0.01				ILB Méthc
* 1,1,2-Trichloroethane (μg/]	1)	<0.05				ILB Méthc
* Tétrachloroéthylène (μg/l)		<0.01				ILB Méthc
* Chlorodibromométhane (μg/l)		<0.01				ILB Méthc
* Chlorobenzène (μg/l)		<1				ILB Métho
* Bromoforme (μg/l)		<0.01				ILB Métho
* 1,1,2,2-Tétrachloroéthane (μg/l)	<0.01				ILB Métho
* 1,3-Dichlorobenzène (μg/l)		<0.05				ILB Métho
* 1,4-Dichlorobenzène (μg/l)		<0.05				ILB Métho
* 1,2-Dichlorobenzène (μg/l)		<0.05				ILB Métho
Pesticides Organoazotés (ty	pe triazine)				-	20 11001
* Atrazine (μg/l)		<0.01				
* Simazine (μg/l)		<0.01				Wallia
* Propazine (μg/1)		<0.01				for the he
* Déséthylatrazine (μg/l)		<0.01				V
* Désisopropylatrazine (μg/l)		<0.01				7 18

Clermont-Ferrand, le 14 Novembre 2000

Analyse validée par : CLEMENT Bruno

Lie Mithe Le Responsable de la diffusion

CLEMENT Bruno 五字 無事

但主题1位 (1 Wite

1.9 251.1 Like alle to La to Electrical Ed Willy

RESULTATS D'ANALYSE DE TYPE B3C3C4bc (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72026

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

CAPTAGE

Réception au laboratoire le 26 Octobre 2000 à 16h59

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c) (SUITE) Résultat Limite de Qualité Méthode Pesticides organochlorés * HCB (µg/1) <0.01 * alpha НСН (µg/l) < 0.02 * Lindane (µg/l) < 0.02 * Heptachlore (μg/1) < 0.02 * Aldrin (μg/l) < 0.02 Heptachlore epoxide (μg/l) <0.02 * Endosulfan (μg/1) < 0.02 * Dieldrin (μg/l) < 0.02 * Endrin (μg/l) < 0.02 * DDT pp' (μg/l) < 0.02 * B HCH (µg/1) <0.02 * DDE pp' (μg/1) < 0.02 * DDO op' (μg/l) < 0.02 * DDD pp' (μg/l) < 0.02 Pesticides organophosphorés * Dimethoate $(\mu g/1)$ <0.01 * EPN (μg/1) < 0.01 * Malathion (µg/1) < 0.01 * Monocrotophos (μg/1) < 0.01 * Parathion $(\mu g/1)$ <0.01 * Sulfotepp (μg/1) < 0.01 The Sec 5 * TEPP (μg/1) < 0.01

Clermont-Ferrand, le 14 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion

CLEMENT Bruno

RESULTATS D'ANALYSE DE TYPE B3C3C4bc (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72026

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

CAPTAGE

Réception au laboratoire le 26 Octobre 2000 à 16h59

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W. DDASS 63

	ANALYSE DES ANIONS		
	Résultat	Limite de Qualité	Méthodo
Chlorures (mg/l)	1.2		Std Meth
Nitrites (mg NO2/1)	<0.050		NF T 900
Nitrates (mg NO3/1)	2.30	0.0 - 50.0	NF T 900
Sulfates (mg/l)	3.4	0.0 - 250.0	ISO 1030
Hydrogénocarbonates (HCO3) (mg/1)	17.1		Calculé
Carbonates (CO3) (mg/l)	0.00		Calculé
Phosphore total (mg P205/1)	<0.10		NF T 900.
Fluorures (mg/l)	<0.05		ISO 1035

	ANALYSE DES CATIONS		
	Résultat	Limite de Qualité	Méthode
Ammonium (mg NH4/1)	<0.10	0.00 - 4.00	ISO 7150
Calcium (mg/1)	3.00		Std Meth
Magnésium (mg/l)	1.40		Std Meth
Sodium (mg/l)	3.3		NF T 900
Potassium (mg/l)	1.6		NF T 900
Manganèse (mg/l)	<0.005		NF T 901
Fer (mg/l)	0.019		Std Meth
Zinc (mg/l)	<0.030	0.000 - 5.000	NF T 901
Aluminium (mg/l)	0.026		NF T 901.
Cuivre (mg/l)	<0.002		NF T 901.

Clermont-Ferrand, le 14 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusio

51 N. 16 40 = 5% A 1. 916

管具设计 3. Fr. 4. 7 150 71: 1013

31 Y 11 1 1 1 913

CLEMENT Bruno

RESULTATS D'ANALYSE DE TYPE B3C3C4bc (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DONE Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72026

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

CAPTAGE

Réception au laboratoire le 26 Octobre 2000 à 16h59

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANALYSE PHYSICO-CHIMIOUE

		011111111111111111111111111111111111111	
	Résultat	Limite de Qualité Métho	ode
Conductivité à 25°C (μS/cm)	43.1	EN 278	388
рН ā 20°C (Unités pH)	5.90	NF T S	9000
pH après marbre (à 20°C) (Unités pH)	6.60		
Titre Alcalimétrique Complet (TAC) (°F)	1.4	ILB Mé	<i>Ethc</i>
T.A.C. après marbre (°F)	6.6	ILB Mé	<i>thc</i>
Titre Hydrotimétrique Total (THT) (°F)	1.3	Calcul	lé
Titre Hydrotimétrique Permanent (THP) (°F)	-	Calcul	é
Silice (mg SiO2/1)	17.90	ILB Me	ethc
Oxygène dissous (mg O2/1)	8.9	EN 258	313
Couleur (quantitatif) (Hazen)	<5	ILB Mé	thc
Résidu sec à 175-185°C (mg/l)	47.0	NF T 9	002
Oxydabilité à chaud en milieu acide (mg 02/1)	<0.5	IŞO 84	67
Turbidité (NTU)	<0.2	EN 270	27
Titre Alcalimétrique (TA) (°F)	<0.1	ILB Mé	thc
Anhydride carbonique libre (mg CO2/1)	41.7	NF T 9	001

Remarques et conclusions

Physico-chimie : Eau extrêmement peu minéralisée.

Les analyses "SCV" ont été confirmées par une double détermination.

Clermont-Ferrand, le 14 Novembre 2000

Analyse validée par : CLEMENT Bruno

ME 7 7967 Le Responsable de la diffusion

CLEMENT Bruno

The same

· - 11 1. 2. $I_{\rm b}=r^{\mu}\tilde{r}_1(50)$ Saleule. La sella 71 - STATES ET 119.3 a man

RESULTATS D'ANALYSE DE TYPE B3C3C4bc (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72026

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage LES MONTILLES

CAPTAGE

Réception au laboratoire le 26 Octobre 2000 à 16h59

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W, DDASS 63

ANNEXE - BILAN IONIQUE

	mg/1	meq/i
Chlorures	1.2	0.03
Nitrites	<0.050	< 0.01
Nitrates	2.30	0.04
Sulfates	3.4	0.07
Hydrogénocarbonates (HCO3)	17.1	0.28
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.42
	mg/l	meg/1
Ammon i um	<0.10	<0.01
Calcium	3.00	0.15
Magnésium	1.40	0.12
Sodium	3.3	0.14
Potassium	1.6	0.04
Manganèse	<0.005	<0.01
Fer	0.019	<0.01
Zinc	<0.030	<0.01
Aluminium	0.026	<0.01
Cuivre	<0.002	<0.01
TOTAL CATIONS		0.45

Clermont-Ferrand, le 14 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion CLEMENT Bruno

PALLAYES OUEST

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME

Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND SIAEP HAUT-LIVRADOIS 63220 ARLANC

Réf: 234931

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC

Captage PALAYES QUEST

REGARD DE JONCTION - Prélèvement dans bâche par immersion

Réception au laboratoire :

07/10/2008 14:46:00

Prélèvement effectué le :

07/10/2008 09:30:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

	Analyse	Résultat			Limite de Qualité	Réalisé le	Méthode
			Analys	es bactériologiq	ues		
Ø	Coliformes Totaux	2 UFC/100 ml				07/10/2008	NF EN ISO 9308-1
0	Escherichia coli	0 UFC/100 ml			x <= 20000	07/10/2008	NF EN ISO 9308-1
©	Entérocoques	0 UFC/100 ml			x <= 10000	07/10/2008	NF EN ISO 7899-2
©	Spore Bactérie Sulfito-réductrice	0 UFC/100 ml				07/10/2008	NF EN 26461-2
0	Dénombrement à 22°	2 UFC/ml				07/10/2008	NF EN ISO 6222
0	Dénombrement à 37°	0 UFC/ml				07/10/2008	NF EN ISO 6222
			Analyses	des traces orga	niques		
©	Indice Hydrocarbures	<0.1 mg/l			x <= 1,00	22/10/2008	NF EN ISO 9377-2
ł	łydrocarbures Polycycliques Ar	omatiques				07/10/2008	NF EN ISO 17993
	Fluoranthène	<0.001 µg/l					
	Benzo(b)fluoranthène	<0.010 µg/l					
	Benzo(k)fluoranthène	<0.005 µg/l					
	Benzo(a)pyrène	<0.001 µg/l					
	Benzo(ghi)pérylène	<0.020 µg/l					
	Indeno(1,2,3-cd)pyrène	<0.020 µg/l					18
	Total des 6 subsances	<0.020 µg/l			x <= 1,000		
©	Benzène	<0.5 µg/l				15/10/2008	NF ISO 11423-1
© \$	olvants Halogénés Volatils					15/10/2008	Méthode ILB
-	Trichloroéthylène	<0.50 µg/l					
-	Tétrachloroéthylène	<0.50 µg/l					
-	1,2-Dichloroéthane	<0.50 µg/l					54
-	Total tetra+trichloroéthylène	<0.50 µg/l					
0	Chlorure de vinyle	<0.30 µg/l				15/10/2008	Méthode ILB

Clermont-Ferrand, le 04/11/2008

Analyse validée par : ALAMÉ Josette Responsable de la diffusion : ALAMÉ Josette

Page 1 de 2

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

ET DE PHARMACIE CEDEX 01 - FRANCE - - 28, PLACE HENRI TEL: 04 73 28 84 50 DUNANT - B.P. 38 FAX: 04 73 28 84 55

(Suite.)

Réf: 234931

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST

REGARD DE JONCTION - Prélèvement dans bâche par immersion

Réception au laboratoire :

07/10/2008 14:46:00

Prélèvement effectué le : 07/10/2008 09:30:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

	Analyse	Résultat		Limite de Qualité	Réalisé le	Méthode
		An	alyses physico-chimique	s		
C	pH à 20°C	6.00 Unités pH			07/10/2008	NF T 90-008
C	Conductivité à 25°C	62.4 µS/cm			07/10/2008	NF EN 27888
C	Résistivité à 25°C	16026 ohm.cm			08/10/2008	NF EN 27888
C	Potassium	1.2 mg/l			15/10/2008	NF T 90-019
C	Indice Phénol	<0.025 mg/l		x <= 0,100	15/10/2008	T 90-109
C	Cyanures totaux	<10,0 µg/l			14/10/2008	NF EN ISO 14403
C	Agents de surface anioniques	<0,10 mg SABM/I		x <= 0,10	10/10/2008	NF EN 903
		Analyses de	radioactivité (analyses so	us traitées)		
	Activité Beta Résiduelle	<0.01 Bq/L			17/10/2008	calcul
4	Activité Alpha Globale	0.02 Bq/L			17/10/2008	NF M 60-801
	Activité Beta Globale	0.03 Bq/L			17/10/2008	NF M 60-800
	Activité Potassium 40	0.03 Bq/L			13/10/2008	calcul
	Activité volumique Tritium	<1.00 Bq/L			21/10/2008	NF M 60-802-1
	Dose Totale Indicative	<8,00 mSv/an			16/10/2008	Calcul
			Mesures sur le terrain			
	Aspect (qualitatif)	Normal			07/10/2008	Méthode ILB
	Hydrogène sulfuré	Absence			07/10/2008	Méthode ILB
C	pH	6.20 Unités pH			07/10/2008	NF T 90-008
	Température de l'air	7.0 °C			07/10/2008	Méthode ILB
	Température de l'eau	8.5 °C		x <= 25,0	07/10/2008	Méthode ILB
		Anal	yses de traces inorganiqu	ıes		
O	Aluminium	0.050 mg/l			07/10/2008	NF EN ISO 11885
C	Baryum	<0.050 mg/l		x <= 1	07/10/2008	NF EN ISO 11885
(C)	Chrome total	<0.010 mg/l		x <= 0,050	07/10/2008	NF EN ISO 11885
(C)	Cuivre	<0.010 mg/l			07/10/2008	NF EN ISO 11885
C	Fer	0.076 mg/l			07/10/2008	NF EN ISO 11885
C	Mercure	<0.0002 mg/l		x <= 0,0010	08/10/2008	NF EN 1483
C	Plomb	<0.005 mg/l			17/10/2008	NF EN ISO 17294-2
C	Zinc	<0.010 mg/l		x <= 5,000	07/10/2008	NF EN ISO 11885

Clermont-Ferrand, le 04/11/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 2 de 2

ACCREDITATION N° 1-1112 PORTEE COMMUNIQUEE ESSAIS SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE **MEDECINE** DE PHARMACIE PLACE HENRI DUNANT 28, B.P. 38 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE -TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

12 Not 2005

RAPPORT D'ANALYSE

Demandeur de l'analyse :
DDASS DU PUY DE DOME
Service Santé Environnement
60, Avenue de l'Union Soviétique
63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139092

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST

REGARD DE JONCTION - dans bac

Réception au laboratoire le 11 Août 2005 à 14h58

Prélèvement effectué le 11 Août 2005 à 09h00 par BROTTE C., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Incert.	Limite de Qualité	Méthode
Température de l'eau (°C)	Non Déterminé		<25.0	Méthode ILB
Température de l'air (°C)	Non Déterminé			Méthode ILB
Hydrogène sulfuré	Absence			Méthode ILB
pH à 20°C (Unités pH)	Non Déterminé			NF T 90-008

ANALYSE PHYSICO-CHIMIQUE

		Résultat	Incert.	Limite d	e Qualité	Methode
©	Conductivité à 25°C (µS/cm)	61.3				NF EN 27888
	pH à 20°C (Unités pH)	6.20				NF T 90-008
	pH après marbre (à 20°C) (Unités pH)	7.10				NF T 90-008
	Titre Alcalimétrique Complet (TAC) (°F)	2.6				Flux continu
	T.A.C. après marbre (°F)	7.3				Flux continu
	Titre Hydrotimétrique Total (THT) (°F)	1.7 %				Calculé
0	Turbidité (NTU)	0.6				NF EN ISO 7027
	Titre Alcalimétrique (TA) (°F)	<0.1				Flux continu
	Silice (mg SiO2/1)	24.20				NF EN ISO 11885
	Carbone Organique Total (mg C/l)	0.30				NF EN 1484
	Oxydabilité à chaud en milieu acide (mg O2/1)	<0.5		<	10.0	NF EN ISO 8467
	Oxygène dissous (mg 02/1)	10.0				NF EN 25814
	Anhydride carbonique libre (mg CO2/1)	33.6				NF T 90-011

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : ALAME Josette

2 2 NOV. 2005

es obiets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa

Remarques concernant ce rapport :
Seuls les paramètres marqués du symbole © sont converts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

Page 1 / 5

FACULTÉS DE MÉDECINE ET DE PHARMACIE – 28, PLACE HENRI DUNANT – B.P. 38 - 63001 CLERMONT-FERRAND CEDEX 01 – FRANCE – TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

RAPPORT D'ANALYSE (SUITE)

17 KG. 2005

Demandeur de l'analyse :
DDASS DU PUY DE DOME
Service Santé Environnement
60, Avenue de l'Union Soviétique
63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 139092

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST

REGARD DE JONCTION - dans bac

Réception au laboratoire le 11 Août 2005 à 14h58

Prélèvement effectué le 11 Août 2005 à 09h00 par BROTTE C., DDASS 63

ANALYSE DES ANIONS

		Résultat	Incert.	Limite de Qualité	Méthode
©	Chlorures (mg/l)	1.6		<200.0	NF EN ISO 10304-1
	Nitrites (mg NO2/1)	<0.003			NF EN ISO 13395
	Nitrates (mg NO3/1)	1.80		<50.00	NF EN ISO 10304-1
	Sulfates (mq/l)	1.8		<250.0	NF EN ISO 10304-1
	Hydrogénocarbonates (HCO3) (mg/l)	31.7			Calculé
	Carbonates (CO3) (mg/l)	0.00			Calculé
0	Phosphore total (mg P2O5/1)	<0.10			NF EN ISO 10304-1
0	Fluorures (mg/l)	<0.05			NF EN ISO 10304-1
		ANALYSE DES CA	ATIONS		
		Résultat	Incert.	Limite de Qualité	Méthode
0	Ammonium (mg NH4/1)	<0.05		<4.00	NF EN ISO 11732
	Calcium (mg/l)	4.30			NF EN ISO 7980
	Magnésium (mg/l)	1.60			NF EN ISO 7980
	Sodium (mg/1)	4.9			NF T 90-019
	Potassium (mg/1)	1.0			NF T 90-019

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par : CLEMENT Bruno Le Responsable de la diffusion : ALAME Josette

2 2 NOV. 2005

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est apparése que sons su forme intérmile. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

17 110. 2000

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse :
DDASS DU PUY DE DOME
Service Santé Environnement
60, Avenue de l'Union Soviétique
63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139092

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST

REGARD DE JONCTION - dans bac

Réception au laboratoire le 11 Août 2005 à 14h58

Prélèvement effectué le 11 Août 2005 à 09h00 par BROTTE C., DDASS 63

ANALYSES BACTERIOLOGIQUES

		Résultat	Incert.	Limite de Qualité	Métho	de	
6	Coliformes Totaux (UFC/100 ml)	Non Déterminé			NF EN	I ISO	9308-1
	Escherichia coli (UFC/100 ml)	0			NF EN	I ISO	9308-1
	Entérocoques (UFC/100 ml)	0		0 ~ 10000	NF EN	I ISO	7899-2
	Spore Bactérie Sulfito-réductrice (UFC/100	Non Déterminé			NF EN	V 2646	1-2
	ml)						73
0	Dénombrement à 37° (UFC/ml)	Non Déterminé			NF EN	N ISO	6222
0	Dénombrement à 22° (UFC/ml)	Non Déterminé			NF EN	N ISO	6222

ANALYSE DE RADIOACTIVITE (sous traitée)

	Résultat	Incert.	Limite de Qualité	Méthode
Activité Alpha Globale (Bq/L)	Non Déterminé			NFM 60801
Activité Beta Globale (Bq/L)	Non Déterminé			NFM 60800
Activité volumique Tritium (Bq/L)	Non Déterminé			NFM 60802-1
Dose Totale Indicative (mSv/an)	Non Déterminé			

ANALYSES DES METAUX

		Résultat	Incert.	Limite de Qualité	Métho	de	
0	Antimoine (mg/l)	<0.005			NF EN	ISO	15586
	Arsenic (mg/l)	<0.005		<100.000	NF EN	ISO	15586
	Bore (mg/l)	<0.050			NF EN	ISO	11885
	Cadmium (mg/l)	<0.0005		<0.0050	NF EN	ISO	5961
	Manganèse (mg/l)	0.006			NF EN	ISO	11885
	Nickel (mg/l)	<0.005			NF EN	ISO	11885
	Sélénium (mg/l)	<0.005		<0.010	NF EN	ISO	15586
	Fer dissous (mg/l)	0.023			NF EN	ISO	11885

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par :

CLEMENT Bruno

Le Responsable de la diffusion : ALAME Josette

Remarques concernant ce rapport:

Seuls les paranètres marques du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa fonne intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

RAPPORT D'ANALYSE

Demandeur de l'analyse :
DDASS DU PUY DE DOME
Service Santé Environnement
60, Avenue de l'Union Soviétique
63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 139092

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST

REGARD DE JONCTION - dans bac

Réception au laboratoire le 11 Août 2005 à 14h58

Prélèvement effectué le 11 Août 2005 à 09h00 par BROTTE C., DDASS 63

ANALYSE CHROMATOGRAPHIQUE

	Résultat	Incert.	Limite de Qualité	Méthode
<pre> ⑤ Indice Hydrocarbures (mg/l) </pre>	<0.10		<1.00	NF EN ISO 9377-2
[©] Benzène (μg/l)	Non Déterminé			NF ISO 11423-1
Solvants Halogénés Volatils				
* Trichloroéthylène (μg/l)	<0.01			Methode interne
* Tétrachloroéthylène (μg/l)	<0.01			Methode interne
* 1,2-Dichloroéthane (μg/l)	<0.05			Methode interne
* Total tetra+trichloroéthylène (μg/l)	<0.02			Methode interne
Phényl-urées				
* Diuron (ug/l)	<0.1			NF EN ISO 11369
* Isoproturon (ug/l)	<0.1			NF EN ISO 11369
* Linuron (ug/l)	<0.1			NF EN ISO 11369
Pesticides Organoazotés				
* Atrazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
* Simazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
* Propazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
* Déséthylatrazine (μg/l)	<0.01			NF EN ISO 10695
* Désisopropylatrazine (μg/l)	<0.01		<2.00	NF EN ISO 10695
* Cyanazine (μg/l)	<0.01		<2.00	NF EN ISO 10695
* Terbuthylazine (µg/l)	<0.01			NF EN ISO 10695
* Terbuméton (µg/l)	<0.01			NF EN ISO 10695
Pesticides organophosphorés				
* Dimethoate (µg/l)	<0.01		<2.00	NF EN ISO 10695
* EPN (µg/1)	<0.01		<2.00	NF EN ISO 10695
* Malathion (μg/l)	<0.01			NF EN ISO 10695
* Monocrotophos (µg/l)	<0.01			NF EN ISO 10695
* Parathion (µg/1)	<0.01			NF EN ISO 10695
* Sulfotepp (µg/l)	<0.01			NF EN ISO 10695
* TEPP (µg/l)	<0.01			NF EN ISO 10695
Pesticides totaux (µg/l)	<0.01		<5.00	Calculé

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion :
ALAME Josette

2 2 NOV. 2005

Remajues concernant ce ramport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous su forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

Page 1/2

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 139092

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST

REGARD DE JONCTION - dans bac

Réception au laboratoire le 11 Août 2005 à 14h58

11 Août 2005 à 09h00 par BROTTE C., DDASS 63 Prélèvement effectué le

ANNEXE - BILAN IONIQUE

	mq/l	meg/1
	mg/1	meq/1
Chlorures	1.6	0.05
Nitrites	<0.003	<0.01
Nitrates	1.80	0.03
Sulfates	1.8	0.04
Hydrogénocarbonates (HCO3)	31.7	0.52
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.64
	mg/l	meq/l
Ammonium	<0.05	<0.01
Calcium	4.30	0.21
Magnésium	1.60	0.13
Sodium	4.9	0.21
Potassium	1.0	0.03
TOTAL CATIONS		0.58

Clermont-Ferrand, le 28 Septembre 2005

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : ALAME Josette

22 NOV. 2005

Remaraues concernant ce rapport :

Seuls les paramètres marques du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soums à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04 73 28 84 50

ET DE PHARMACIE

28, PLACE HENRI DUNANT

FAX: 04 73 28 84 55

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60. Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 99648

Antimoine (mg/l)

Arsenic (mg/l)

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYEZ OUEST - DRAIN 1

DRAIN 1 GAUCHE

Réception au laboratoire le 27 Janvier 2003 à 16h36

Prélèvement effectué le

27 Janvier 2003 à 11h35 par PEYRAUD S., INSTITUT LOUISE BLANQUET

ANALYSES DES METAUX

Résultat

Incert.

Limite de Oualité

Méthode

<0.005 0.008

0.000 - 0.100

NF T 90-119 NF T 90-119

Remarques et conclusions

Clermont-Ferrand, le 5 Février 2003

Analyse validée par : ALAME Josette

Le Responsable de la diffusion ALAME Josette

ACCREDITATION PORTÉE COMMUNIQUÉE SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet. PLACE HENRI DUNANT ET DE PHARMACIE 28, MÉDECINE FAX: 04 73 28 84 55 **FACULTÉS** DE TEL: 04 73 28 84 50 CEDEX 01 - FRANCE -CLERMONT-FERRAND

7 FEV. 2003

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 99649

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYEZ OUEST - DRAIN 2

DRAIN 2 FACE CENTRE

Réception au laboratoire le 27 Janvier 2003 à 16h36

Prélèvement effectué le

27 Janvier 2003 à 11h36 par PEYRAUD S., INSTITUT LOUISE BLANQUET

ANALYSES DES METAUX

Résultat

Incert.

Limite de Qualité

Méthode

Antimoine (mg/l) Arsenic (mg/l)

<0.005 <0.005

0.000 - 0.100

NF T 90-119 NF T 90-119

Remarques et conclusions

Clermont-Ferrand, le 5 Février 2003

Analyse validée par : ALAME Josette

Le Responsable de la diffusion ALAME Josette

ACCREDITATION Nº 1-1112 PORTÉE COMMUNIQUÉE SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

PLACE HENRI DUNANT PHARMACIE 28, DE MÉDECINE ET FACULTÉS DE FAX: 04 73 28 84 55 CEDEX 01 - FRANCE -TEL: 04 73 28 84 50 CLERMONT-FERRAND

7 FEV. 2003

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 99650

1

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC Captage PALAYEZ OUEST - DRAIN 3

DRAIN 3 FACE DROITE

Réception au laboratoire le 27 Janvier 2003 à 16h36

Prélèvement effectué le

27 Janvier 2003 à 11h37 par PEYRAUD S., INSTITUT LOUISE BLANQUET

ANALYSES DES METAUX

Résultat

Incert.

Limite de Qualité

Antimoine (mg/l)

Arsenic (mg/l)

<0.005

NF T 90-119

<0.005

0.000 - 0.100

NF T 90-119

Remarques et conclusions

Clermont-Ferrand, le 5 Février 2003

Analyse validée par : ALAME Josette

Le Responsable de la diffusion ALAME Josette

ACCREDITATION Nº 1-1112 PORTÉE COMMUNIQUÉE Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole @ sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

PLACE HENRI DUNANT ET DE PHARMACIE 28, MÉDECINE FACULTES FAX: 04 73 28 84 55 TEL: 04 73 28 84 50 CEDEX 01 - FRANCE -CLERMONT-FERRAND

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 88105

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST

REGARD DE JONCTION

Réception au laboratoire le 28 Mars 2002 à 15h47

Prélèvement effectué le 28 Mars 2002 à 14h15 par PEYRAUD S., INSTITUT LOUISE BLANQUET

ANALYSE DE METAUX

Résultat

Incert.

Limite de Qualité

Méthode

0.005

0.000 - 0.100 NF T 90-119

Arsenic (mg/l)

Remarques et conclusions

Remarque : Echantillon conforme en ce qui concerne les paramètres analysés.

Clermont-Ferrand, le 5 Avril 2002 -

Analyse validée par : ALAME Josette

Le Responsable de la diffusion ALAME Josette

ACCREDITATION N* 1~1112 PORTÉE COMMUNIQUÉE Remaraues concernant ce rapport :

Seuls les paramètres marquès du symbole © sont couverts par l'accreditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Essais du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet. PLACE HENRI DUNANT B.P. 38 ET DE PHARMACIE 28, DE MÉDECINE TEL 04 73 28 84 50 FAX: 04 73 28 84 55 CEDEX 01 - FRANCE -63001 CLERMONT-FERRAND

ANALYSE DE TYPE B3 C1

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC G3220 ARLANC

Rf: 72027

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYEZ OUEST - DRAIN 1

DRAIN 1

Réception au laboratoire le 26 Octobre 2000 à 17h12

Prélèvement effectué le

26 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat Normal Limite de Qualité

Méthode

Aspect (qualitatif)

Chlore résiduel total (mg/l)

Chlore résiduel libre (mg/l)

Bioxyde de chlore (mg C12/1)

Chlorite (μg/l)

Non Déterminé

Non Déterminé

Non Déterminé Non Déterminé

DETERMINATIONS PHYSICO-CHIMIQUES

Conductivité à 25°C (μ S/cm) 33.1 pH à 20°C (Unités pH) 5.90 Turbidité (NTU) <0.2

Limite de Qualité Méthode

EN 27888

NF T 9000

EN 27027

DETERMINATIONS BACTERIOLOGIQUES
Résultat

Coliformes Totaux (UFC/100 ml)	10
Coliformes Thermotolérants (UFC/100 ml)	10
Streptocoques Fécaux (UFC/100 ml)	0
Spore bactérie anaérobie sulfito réduct. (UFC/20ml)	0
Dénombrement à 37° (UFC/ml)	0
Dénombrement à 22° (UFC/ml)	38
Pseudomonas aeruginosa (UFC/100 ml)	Non Déterminé

Limite de Qualité Méthode
0 - 50000 NF T 9041
0 - 20000 NF T 9041
<10000 NF T 9041
NF T 9041

NF T 9040 NF T 9040 ILB Métho

Remarques et conclusions

Bactériologie : Echantillon contaminé. Eau non potable.

Physico-chimie : Eau extrêmement peu minéralisée.

Clermont-Ferrand, le 30 Octobre 2000

Analyse validée par : ALAME Josette Le Responsable de la diffusion

ALAME Josette

ANALYSE DE TYPE B3 C1

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72028

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYEZ OUEST - DRAIN 2

DRAIN 2

Réception au laboratoire le 26 Octobre 2000 à 17h12

Prélèvement effectué le

26 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat Norma 1

Limite de Qualité Méthode

Aspect (qualitatif)

Chlore résiduel total (mg/l)

Chlore résiduel libre (mg/l)

Bioxyde de chlore (mg C12/1)

Chlorite (µg/l)

Non Déterminé

Non Déterminé

Non Déterminé

Non Déterminé

DETERMINATIONS PHYSICO-CHIMIQUES

Résultat

48.1

6.10

Limite de Qualité

Méthode EN 27888 NF T 9000.

pH à 20°C (Unités pH) Turbidité (NTU)

Conductivité à 25°C (µS/cm)

< 0.2

EN 27027

DETERMINATIONS BACTERIOLOGIOUES

Résultat

Limite de Qualité

Méthode

Coliformes Totaux (UFC/100 ml)

2

0 - 50000

NF T 9041.

Coliformes Thermotolérants (UFC/100 ml) Streptocoques Fécaux (UFC/100 ml)

2

0 - 20000

NF T 9041

Spore bactérie anaérobie sulfito réduct. (UFC/20ml) 0

2

<10000

NF T 90416

ILB Méthoc

Dénombrement à 37° (UFC/ml)

NF T 90415

Dénombrement à 22° (UFC/ml) Pseudomonas aeruginosa (UFC/100 ml)

NF T 90401 NF T 90402

Remarques et conclusions

Non Déterminé

Bactériologie : Echantillon contaminé. Eau non potable.

Physico-chimie : Eau extrêmement peu minéralisée.

Clermont-Ferrand, le 30 Octobre 2000

Analyse validée par :

Le Responsable de la diffusion

ALAME Josette

ALAME Josette

ANALYSE DE TYPE B3 C1

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72029

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYEZ OUEST - DRAIN 3

DRAIN 3

Réception au laboratoire le 26 Octobre 2000 à 17h12

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat Norma I

Limite de Qualité

Méthode

Aspect (qualitatif)

Chlore résiduel total (mg/l)

Chlore résiduel libre (mg/l)

Bioxyde de chlore (mg C12/1)

Conductivité à 25°C (µS/cm)

pH à 20°C (Unités pH)

Turbidité (NTU)

Chlorite (µg/l)

Hon Déterminé

Non Déterminé

Non Déterminé

Non Déterminé

DETERMINATIONS PHYSICO-CHIMIQUES

Résultat

52.1

5.80

< 0.2

Limite de Qualité

Méthode

EN 27888

NF T 9000

ILB Métho

EN 27027

DETERMINATIONS BACTERIOLOGICUES

	DIGITIMITIONS	DUCTRIVIONOGIÕOED		
	Résultat		Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	7		0 - 50000	NF T 904)
Coliformes Thermotolérants (UFC/100 ml)	7		0 - 20000	NF T 9041
Streptocoques Fécaux (UFC/100 ml)	0		<10000	NF T 9041
Spore bactérie anaérobie sulfito réduct. (UFC/20ml) 1			NF T 9041
Dénombrement à 37° (UFC/ml)	0			NF T 9040
Dénombrement à 22° (UFC/ml)	0			NF T 9040
Pseudomonas aeruginosa (UFC/100 ml)	Non Détern	niné		IIR Métho

Remarques et conclusions

Bactériologie : Echantillon contaminé. Eau non potable.

Physico-chimie: Eau trés faiblement minéralisée.

Clermont-Ferrand, le 30 Octobre 2000

Analyse validée par :

ALAME Josette

Le Responsable de la diffusion

ALAME Josette

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72030

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST REGARD DE JONCTION

Réception au laboratoire le 26 Octobre 2000 à 17h01

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4a)

	Résultat	Limite de Qualité	Méthode
Azote KJELDAHL (mg N/1)	<1.00		EN 25663
Hydrocarbures totaux (mg/l)	<0.01	0.00 - 1.00	NF T 90114
Agents de surface anioniques (mg SABM/1)	<0.10		EN 903
Indice Phénoł (mg/l)	<0.025	0.000 - 0.100	NF T 90109

		DETERMINATIONS	PHYSICO-CHIMIQUES	(type	C4b)	
			Résultat	,	Limite de Qualité	Méthode
	Cadmium (mg/l)	(F)	<0.0005		0.0000 - 0.0050	NF T 90119
	Plomb (mg/l)		<0.005		0.000 - 0.050	NF T 90119
	HPA (Hydrocarbures Polycyc	liques Aromatiques en μg,	/1)			
,	* Fluoranthène (μg/l)		<0.001			NFT90115
,	* Benzo (3,4) Fluoranthène (μg/l)	<0.010			NFT90115
,	* Benzo (11,12) Fluoranthène	(µg/1)	<0.005			NFT90115
,	* Benzo (3,4) Pyrène (μg/l)		<0.001			NFT90115
,	* Benzo (1.12) Pérylène (μg/	1)	<0.020			NFT90115
7	* Indéno (1,2,3-cd) Pyrène (μg/l)	<0.020			NFT90115
,	* Total (μg/l)		0.000		0.000 - 1.000	NFT90115

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion :

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72030

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST REGARD DE JONCTION

Réception au laboratoire le 26 Octobre 2000 à 17h01

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c)

	DETERMINATIONS FILISICO-CHIMIQUES	(cybe cac)	
	Résultat	Limite de Qualité	Méthode
Arsenic (mg/l)	0.006	0.000 - 0.100	NF T 90119
Chrome total (mg/l)	<0.002	0.000 - 0.050	NF T 90119
Mercure (mg/l)	<0.0002	0.0000 - 0.0010	ILB Method
Sélénium (mg/l)	<0.005	0.000 - 0.010	NF T 90119
Cyanures totaux (mg/l)	<0.01	0.000 - 0.050	NF T 90107
Solvants Halogénés Volatils			
* Chloroforme (μg/l)	<0.01		ILB Méthod
* 1,1,1-Trichloroéthane ($\mu g/l$	<0.01		ILB Méthod
* Tétrachlorure de carbone (μ	g/l) < 0.01		ILB Méthod
* Trichloroéthylène (μg/l)	<0.01		ILB Méthod
* Bromodichlorométhane ($\mu g/1$)	<0.01		ILB Méthod
* cis-1,3-Dichloropropène (μg	/l) < 0.0 1		ILB Méthod
* trans-1,3-Dichloropropène (μg/l) <0.01		ILB Méthod
* 1,1,2-Trichloroéthane ($\mu g/l$	(0.05)		ILB Méthod
* Tétrachloroéthylène (μg/l)	<0.01		ILB Méthod
* Chlorodibromométhane ($\mu g/1$)	<0.01		ILB Méthod
* Chlorobenzèπe (μg/l)	<1		ILB Méthod
* Bromoforme (μg/l)	<0.01		ILB Méthod
* 1,1,2,2-Tétrachloroéthane (μg/l) < 0.01		ILB Méthod
* 1,3-Dichlorobenzène (μg/l)	<0.05		ILB Méthod
* 1.4-Dichlorobenzène ($\mu g/l$)	<0.05		ILB Méthod
* 1,2-Dichlorobenzène (μg/l)	<0.05		ILB Méthod
Pesticides Organoazotés (ty	pe triazine)		
* Atrazine (µg/l)	<0.01		
* Simazine (μg/l)	<0.01		
* Propazine (μg/l)	<0.01		
* Déséthylatrazine (μg/l)	<0.01		
* Désisopropylatrazine ($\mu g/1$)	<0.01		

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

CLEMENT Bruno

Le Responsable de la diffusion :

A Durk

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement

1.RUE D'ASSAS

63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72030

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST REGARD DE JONCTION

Réception au laboratoire le 26 Octobre 2000 à 17h01

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIOUES (type C4c) (SUITE)

		DETEKHTIMALIONS	FUISICO-CHIMIQUES	(rabe cac)	(20116)	
			Résultat		Limite de Qualité	Méthode
	Pesticides organochi	lorés				
:	* HCB (μg/1)		<0.01			
,	* alpha HCH (μg/l)		<0.02			
,	* Lindane (μg/l)		<0.02			
	* Heptachlore (μg/l)		<0.02			
	* Aldrin (μg/l)		<0.02			
	* Heptachlore epoxide	(μg/1)	<0.02			
	* Endosulfan (μg/l)		<0.02			
	* Dieldrin (μg/l)		<0.02			
	* Endrin (μg/l)		<0.02			
	* DDT pp' (μg/l)		<0.02			
	* B HCH (μg/1)		<0.02			
	* DDE pp' (μg/l)		<0.02			
	* DDD op' (μg/1)		<0.02			
	* DDD pp' (μg/l)		<0.02			
	Pesticides organopho	osphorés				
	* Dimethoate (μg/1)		<0.01			
	* EPN (μg/l)		<0.01			
	* Malathion (μg/l)		<0.01			
	* Monocrotophos (μg/l))	<0.01			
	* Parathion (μg/1)		<0.01			
	* Sulfotepp (μg/l)		<0.01			
	* TEPP (μg/l)		<0.01			

DETERMINATIONS PHYSICO-CHIMIQUES (type C4d)

	Résultat	Limite de Qualité	Méthode
Demande Biochimique en Oxygène - DBO/5 (mg 02/1)	<3.0		NF T 90103
Demande Chimique en Oxygène (mg 02/1)	<30		NF T 90101
Bore (mg/l)	<0.050		ILB Méthod
Baryum (mg/l)	<0.050	0.000 - 1.000	ILB Méthod
Substances extractibles au chloroforme (mg/l)	<0.10		ILB Méthod
Matières en suspension (mg/l)	2.1		NF EN 872

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion :

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72030

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST REGARD DE JONCTION

Réception au laboratoire le 26 Octobre 2000 à 17h01

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Limite de Qualité	Méthode
Odeur (qualitatif)	Sans odeur		
Saveur (qualitatif)	Sans saveur		
Température de l'eau (°C)	Non Déterminé	0.0 - 25.0	NF T 90100
Température de l'air (°C)	Non Déterminé	.*5	NF T 90100
Chlore résiduel total (mg/l)	Non Déterminé		
Chlore résiduel libre (mg/l)	Non Déterminé		
Bioxyde de chlore (mg Cl2/1)	Non Déterminé		
Chlorite (µg/l)	Non Déterminé		
Hydrogène sulfuré	Absence		ILB Méthod
	ANALYSE DES ANIONS		

	Résultat	Limite de Qualité	Méthode
Chlorures (mg/l)	1.5		Std Method
Nitrites (mg NO2/1)	<0.050		NF T 90012
Nitrates (mg N03/1)	1.30	0.0 - 50.0	NF T 90012
Sulfates (mg/l)	2.4	0.0 - 250.0	ISO 10304
Hydrogénocarbonates (HCO3) (mg/l)	19.5		Calculé
Carbonates (CO3) (mg/l)	0.00		Calculé
Phosphore total (mg P2O5/1)	<0.10		NF T 90023
Fluorures (mg/1)	<0.05		ISO 10359

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion :

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72030

 $Produit: Eau \ de \ consommation \ humaine \ au \ point \ de \ puisage \ avant \ traitement \ (Application \ du \ décret: \ produit \ de \ puisage)$

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST REGARD DE JONCTION

Réception au laboratoire le 26 Octobre 2000 à 17h01

Prélèvement effectué le

26 Octobre 2000 par DE ESCOBAR W, DDASS 63

ANALYSE DES CATIONS

	Résultat	Limite de Qualité	Méthode
Ammonium (mg NH4/1)	<0.10	0.00 - 4.00	ISO 7150-2
Calcium (mg/l)	2.90		Std Method
Magnésium (mg/l)	1.30		Std Method
Sodium (mg/1)	4.0		NF T 90019
Potassium (mg/l)	0.8		NF T 90019
Manganêse (mg/l)	0.007		NF T 90119
Fer (mg/l)	0.107		Std Method
Zinc (mg/l)	<0.030	0.000 - 5.000	NF T 90112
Aluminium (mg/l)	0.098		NF T 90119
Cuivre (mg/l)	0.003		NF T 90119

A	NALYSE PHYSICO-CHIMIQUE	;	
	Résultat	Limite de Qualité	Méthode
Conductivité à 25°C (μS/cm)	43.6		EN 27888
pH à 20°C (Unités pH)	6.00		NF T 90008
pH après marbre (à 20°C) (Unités pH)	6.70		
Titre Alcalimétrique Complet (TAC) (°F)	1.6		ILB Méthod
T.A.C. après marbre (°F)	6.8		ILB Méthod
Titre Hydrotimétrique Total (THT) (°F)	1.3		Calculé
Titre Hydrotimétrique Permanent (THP) (°F)	-		Calculé
Silice (mg SiO2/1)	21.80		ILB Method
Oxygène dissous (mg 02/1)	7.3		EN 25813
Couleur (quantitatif) (Hazen)	10		ILB Méthod
Résidu sec à 175-185°C (mg/l)	50.0		NF T 90029
Oxydabilité à chaud en milieu acide (mg 02/1)	1.2		ISO 8467
Turbidité (NTU)	<0.2		EN 27027
Titre Alcalimétrique (TA) (°F)	<0.1		ILB Méthod
Anhydride carbonique libre (mg CO2/1)	46.3		NF T 90011

Remarques et conclusions

Physico-chimie : Eau extrêmement peu minéralisée.

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par :

CLEMENT Bruno

Le Responsable de la diffusion

CLEMENT Bruno

The

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72030

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES OUEST REGARD DE JONCTION

Réception au laboratoire le 26 Octobre 2000 à 17h01

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W, DDASS 63

ANNEXE - BILAN IONIQUE

	mg/1	meq/1
Chlorures	1.5	0.04
Nitrites	<0.050	<0.01
Nitrates	1.30	0.02
Sulfates	2.4	0.05
Hydrogénocarbonates (HCO3)	19.5	0.32
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.43
	mg/l	meg/1
Ammonium	<0.10	<0.01
Calcium	2.90	0.14
Magnésium	1.30	0.11
Sodium	4.0	0.17
Potassium	0.8	0.02
Manganèse	0.007	<0.01
Fer	0.107	<0.01
Zinc	<0.030	<0.01
Aluminium	0.098	0.01
Cuivre	0.003	<0.01
TOTAL CATIONS		0.45

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

PALLAYES EST

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME

Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND

SIAEP HAUT-LIVRADOIS Mairie d'ARLANC **63220 ARLANC**

Réf: 234930

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC Captage PALAYES EST - CHARDET BAS

REGARD DE JONCTION - Prélèvement par immersion dans bâche

Réception au laboratoire :

07/10/2008 14:42:32

Prélèvement effectué le :

07/10/2008 10:10:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

,	Analyse	Résultat		Limite de Qualité	Réalisé le	Méthode
			Analyses bactériologiques			
(C)	Coliformes Totaux	2 UFC/100 ml			07/10/2008	NF EN ISO 9308-1
C	Escherichia coli	2 UFC/100 ml		x <= 20000	07/10/2008	NF EN ISO 9308-1
(C)	Entérocoques	0 UFC/100 ml		x <= 10000	07/10/2008	NF EN ISO 7899-2
C	Spore Bactérie Sulfito-réductrice	0 UFC/100 ml			07/10/2008	NF EN 26461-2
(C)	Dénombrement à 22°	4 UFC/ml			07/10/2008	NF EN ISO 6222
(C)	Dénombrement à 37°	0 UFC/ml			07/10/2008	NF EN ISO 6222

Clermont-Ferrand, le 17/11/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 1 de 5

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE ESSAIS SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 **CLERMONT-FERRAND**

DE PHARMACIE CEDEX 01 - FRANCE -

28, TEL: 04 73 28 84 50

PLACE HENRI DUNANT BP 38 FAX: 04 73 28 84 55

(Suite.)

Réf: 234930

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC Captage PALAYES EST -CHARDET BAS

REGARD DE JONCTION - Prélèvement par immersion dans bâche

Réception au laboratoire :

07/10/2008 14:42:32

Prélèvement effectué le :

07/10/2008 10:10:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyse	Résultat			Limite de Qualité	Réalisé le	Méthode
		Analyses	des traces organiqu	ues		
Indice Hydrocarbures	<0.1 mg/l			x <= 1,00	20/10/2008	NF EN ISO 9377-2
© Hydrocarbures Polycycliques A	romatiques				07/10/2008	NF EN ISO 17993
- Benzo (3,4) Fluoranthène	<0.010 µg/l					
- Benzo (11,12) Fluoranthène	<0.005 µg/l					
- Benzo (1,12) Pérylène	<0.020 µg/l					
- Indéno (1,2,3-cd) Pyrène	<0.020 µg/l					
- Total hors benzo-pyrène	<0.020 µg/l					
- Benzo (3,4) Pyrène	<0.001 µg/l					
© Composés Organiques Volatils					23/10/2008	Méthode ILB
- Benzène	<0.5 µg/l					
- 1,2-Dichloroéthane	<0.5 µg/l					
- Trichloroéthylène	<0.5 µg/l					
- 1,1,2,2-Tétrachloroéthylène	<0.5 µg/l					
- Tri+Tetra Chloréthylène	<0.5 µg/ł					
Aminotriazole	<0,08 µg/l				08/10/2008	Méthode ILB
Dichlobénil	<0,05 µg/l				07/10/2008	Méthode ILB
© Pesticides organoazotés					07/10/2008	Méthode ILB
- Atrazine	<0.05 µg/l					
- Simazine	<0.05 µg/l					
- Déséthylatrazine	<0.05 µg/l					
Pesticides divers					07/10/2008	Méthode ILB
2,4-D	<0.05 µg/l					
Dichlorprop-P	<0.05 µg/l					
Diflubenzuron	<0.05 µg/l					
Triclopyr	<0.05 µg/l					
Fluroxypir (1-méthylheptil ester)	<0,05 µg/l					

Clermont-Ferrand, le 17/11/2008

Analyse validée par : ALAMÉ Josette Responsable de la diffusion : ALAMÉ Josette

Page 2 de 5

FACULTES

63001

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

DE

CLERMONT-FERRAND

MEDECINE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole o sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38
CEDEX 01 - FRANCE - TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

(Suite.)

Réf: 234930

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC Captage PALAYES EST -CHARDET BAS

REGARD DE JONCTION - Prélèvement par immersion dans bâche

Réception au laboratoire :

07/10/2008 14:42:32

Prélèvement effectué le :

07/10/2008 10:10:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

Analyse	Résultat		isé le	Méthode
Pesticides divers		07/10	/2008	Méthode ILB
alphaméthrine	<0.05 µg/l			
Asulame	<0.05 µg/l			
Carbosulfan	<0.05 µg/l			
Cyproconazole	<0.05 µg/l			
Deltaméthrine	<0,05 µg/l			
Fluazifop butyl	<0,05 µg/l			
Hexazinone	<0,05 µg/l			
Lambda cyhalothrine	<0,05 µg/l			
Myclobutanil	<0,05 µg/l			
Oxyfluorfene	<0,05 µg/l			
Propyzamide	<0,05 µg/l			
Quizalofop éthyle	<0,05 µg/l			
Zirame	<0,10 µg/l			
Pesticides totaux calculés	<0.10 µg/l			Calculé
Acrylamide	<0,10 µg/l	07/10)/2008	Méthode ILB

Clermont-Ferrand, le 17/11/2008

Analyse validée par : ALAMÉ Josette Responsable de la diffusion : ALAMÉ Josette

Page 3 de 5

Remarques concernant ce rapport:

Seuls les paramètres marquès du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

ET DE PHARMACIE CEDEX 01 - FRANCE - - 28, PLACE HENRI TEL: 04 73 28 84 50 DUNANT - B.P. 38 FAX: 04 73 28 84 55

(Suite.)

Réf: 234930

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC Captage PALAYES EST -CHARDET BAS

REGARD DE JONCTION - Prélèvement par immersion dans bâche

Réception au laboratoire :

07/10/2008 14:42:32

Prélèvement effectué le :

07/10/2008 10:10:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

,	Analyse	Résultat	Limite de Qualité	Réalisé le	Méthode
		Analyses physico-chimique	S		
0	pH à 20°C	6.00 Unités pH		07/10/2008	NF T 90-008
(C)	Conductivité à 25°C	54.6 μS/cm		07/10/2008	NF EN 27888
©	Chlorures	2.1 mg/l		09/10/2008	NF EN ISO 10304-1
©	Nitrates	3.30 mg NO3/I		09/10/2008	NF EN ISO 10304-1
C	Nitrites	<0.003 mg NO2/I		08/10/2008	NF EN ISO 13395
C	Sulfates	2.8 mg/l	x <= 250,0	09/10/2008	NF EN ISO 10304-1
©	Fluorures	<0.05 mg/l		09/10/2008	NF EN ISO 10304-1
C	Titre Alcalimétrique (TA)	<0.1 °F		07/10/2008	Méthode ILB
	Carbonates (CO3)	0.00 mg/l		09/10/2008	Calculé
©	Titre Alcalimétrique Complet (TAC)	1.7 °F		09/10/2008	Méthode ILB
	Hydrogénocarbonates (HCO3)	20.75 mg/l		10/10/2008	Calculé
C	T.A.C. après marbre	6.4 °F		13/10/2008	Méthode ILB
C	pH après marbre (à 20°C)	6.95 Unités pH		13/10/2008	NF T 90-008
O	Ammonium	<0.05 mg NH4/l	x <= 4,00	08/10/2008	NF EN ISO 11732
C	Calcium	3.00 mg/l		13/10/2008	NF EN ISO 7980
O	Magnésium	1.70 mg/l		13/10/2008	NF EN ISO 7980
C	Sodium	4.5 mg/l	x <= 200,0	13/10/2008	NF T 90-019
O	Potassium	1.5 mg/l		13/10/2008	NF T 90-019
	Titre Hydrotimétrique Total (THT)) 1.00 °F		16/10/2008	Calculé
	Nature de l'eau	eau agressive -		21/10/2008	Calculé
C	Carbone Organique Total	0.32 mg C/l	x <= 10	13/10/2008	NF EN 1484
C	Turbidité	0.7 NTU		07/10/2008	NF EN ISO 7027
C	Indice Phénol	<0.025 mg/l	x <= 0,100	15/10/2008	T 90-109
C	Cyanures totaux	<10,0 μg/l		14/10/2008	NF EN ISO 14403
C	Agents de surface anioniques	<0,10 mg SABM/l	x <= 0,10	10/10/2008	NF EN 903
	Anhydride carbonique libre	32.4 mg CO2/l		07/10/2008	NF T 90-011
		Analyses de radioactivité (analyses so	us traitées)		
	Activité Beta Résiduelle	<0.01 Bq/L		17/10/2008	calcul
	Activité Alpha Globale	<0,02 Bq/L		17/10/2008	NF M 60-801
	Activité Beta Globale	0.04 Bq/L		17/10/2008	NF M 60-800
	Activité Potassium 40	0.04 Bq/L		13/10/2008	calcul
	Activité volumique Tritium	<8,00 Bq/L		16/10/2008	NF M 60-802-1
	Dose Totale Indicative	<0.1 mSv/an		21/10/2008	Calcul

Clermont-Ferrand, le 17/11/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion :

ALAMÉ Josette

Page 4 de 5

63001

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE ESSAIS SUR DEMANDE

DE

Remarques concernant ce rapport;

Seuls les paramètres marqués du symbole @ sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

MEDECINE **CLERMONT-FERRAND**

PHARMACIE CEDEX 01 - FRANCE -

28, PLACE HENRI TEL: 04 73 28 84 50

DUNANT B.P. 38 FAX: 04 73 28 84 55

(Suite.)

Réf: 234930

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de SAINT ALYRE D'ARLANC Captage PALAYES EST - CHARDET BAS

REGARD DE JONCTION - Prélèvement par immersion dans bâche

Réception au laboratoire :

07/10/2008 14:42:32

Prélèvement effectué le :

07/10/2008 10:10:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

	Analyse	Résultat	Limite de Qualité	Réalisé le	Méthode
		Mesures sur le terrain			
	Aspect (qualitatif)	Normal		07/10/2008	Méthode ILB
C	рН	5.90 Unités pH		07/10/2008	NF T 90-008
	Température de l'air	11.0 °C		07/10/2008	Méthode ILB
	Température de l'eau	9.2 °C	x <= 25,0	07/10/2008	Méthode ILB
		Analyses de traces inorganiq	ues		
C	Aluminium	0.039 mg/l		07/10/2008	NF EN ISO 11885
C	Antimoine	<0.005 mg/l		17/10/2008	NF EN ISO 17294-2
	Arsenic	<0.005 mg/l	x <= 0,100	15/10/2008	NF EN ISO 15586
(C)	Baryum	<0.050 mg/l	x <= 1	07/10/2008	NF EN ISO 11885
(Ç)	Bore	<0.05 mg/l		07/10/2008	NF EN ISO 11885
(C)	Cadmium	<0.0005 mg/l		17/10/2008	NF EN ISO 17294-2
(C)	Chrome total	<0.010 mg/l	x <= 0,050	07/10/2008	NF EN ISO 11885
(C)	Cuivre	<0.010 mg/l		07/10/2008	NF EN ISO 11885
(C)	Fer	0.028 mg/l		07/10/2008	NF EN ISO 11885
$\langle C \rangle$	Manganèse	<0.010 mg/l		07/10/2008	NF EN ISO 11885
(C)	Nickel	<0.010 mg/l		07/10/2008	NF EN ISO 11885
(C)	Plomb	<0.005 mg/i		17/10/2008	NF EN ISO 17294-2
	Sélénium	<0.005 mg/l	x <= 0,010	14/10/2008	NF EN ISO 15586
(C)	Zinc	<0.010 mg/l	x <= 5,000	07/10/2008	NF EN ISO 11885

Clermont-Ferrand, le 17/11/2008

Analyse validée par : ALAMÉ Josette

Responsable de la diffusion : ALAMÉ Josette

Page 5 de 5

ACCREDITATION Nº 1-1112 PORTEE COMMUNIQUEE ESSAIS SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole 🖒 sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

DE PHARMACIE CEDEX 01 - FRANCE -

PLACE HENRI 28, TEL: 04 73 28 84 50

DUNANT B.P. 38 FAX: 04 73 28 84 55

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 99646

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES EST + DRAIN GAUCHE

DRAIN 1 FACE

Réception au laboratoire le 27 Janvier 2003 à 16h04

Hydrocarbures totaux (mg/1)

Prélèvement effectué le 27 Janvier 2003 à 11h05 par PEYRAUD S., INSTITUT LOUISE BLANQUET

DETERMINATIONS PHYSICO-CHIMIQUES

Résultat

Limite de Qualité Incert.

Méthode

<0.01

0.00 - 1.00

NF T 90-114

Remarques et conclusions

Clermont-Ferrand, le 7 Février 2003

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion CLEMENT Bruno

1 0 FEV. 2003

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 99647

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES EST - DRAIN DROIT

DRAIN 2 DROITE AU FOND

Réception au laboratoire le 27 Janvier 2003 à 16h04

Hydrocarbures totaux (mg/l)

Prélèvement effectué le 27 Janvier 2003 à 11h10 par PEYRAUD S., INSTITUT LOUISE BLANQUET

DETERMINATIONS PHYSICO-CHIMIQUES

Résultat

Limite de Qualité Incert.

Méthode

<0.01

0.00 - 1.00

NF T 90-114

Remarques et conclusions

Clermont-Ferrand, le 7 Février 2003

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion CLEMENT Bruno

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1 Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 88104

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

and when the model to the comment of the comment of

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES EST -CHARDET BAS

REGARD DE JONCTION

Réception au laboratoire le 28 Mars 2002 à 15h46

Prélèvement effectué le 28 Mars 2002 à 13h45 par PEYRAUD S., INSTITUT LOUISE BLANQUET

DETERMINATIONS PHYSICO-CHIMIQUES

Résultat

Incert.

Limite de Qualité

Méthode

Hydrocarbures totaux (mg/l)

<0.01

0.00 - 1.00

NF T 90-114

Remarques et conclusions

Clermont-Ferrand, le 29 Mars 2002

Analyse validée par : CLEMENT Bruno

100

Le Responsable de la diffusio: CLEMENT Bruno

ANALYSE DE TYPE B3 C1

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : STAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72032

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES EST - DRAIN DROIT

DRAIN DROIT

Réception au laboratoire le 26 Octobre 2000 à 17h12

Prélèvement effectué le

26 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat

Limite de Qualité

Méthode

Aspect (qualitatif)

Chlore résiduel total (mg/l)

Chlore résiduel libre (mg/l) Bioxyde de chlore (mg C12/1)

Conductivité à 25°C (µS/cm)

pH à 20°C (Unités pH)

Turbidité (NTU)

Chlorite ($\mu g/1$)

Normal Non Déterminé

Non Déterminé

Non Déterminé

Non Déterminé

DETERMINATIONS PHYSICO-CHIMIQUES

Résultat

39.7

6.30

< 0.2

Limite de Qualité

Méthode EN 27888

NF T 9000 EN 27027

Méthode

NF T 9041

DETERMINATIONS BACTERIOLOGIQUES

Résultat Coliformes Totaux (UFC/100 ml) 10 Coliformes Thermotolérants (UFC/100 ml) 6 Streptocoques Fécaux (UFC/100 ml) Spore bactérie anaérobie sulfito réduct. (UFC/20ml) ${f 0}$

Dénombrement à 37° (UFC/ml) Dénombrement à 22° (UFC/ml)

Pseudomonas aeruginosa (UFC/100 ml)

Non Déterminé

Limite de Qualité 0 - 50000

0 - 20000<10000

NF T 9041 NF T 9041 NF T 9041

NF T 9046 NF T 9040

ILB Métho

Remarques et conclusions

Bactériologie : Echantillon contaminé. Eau non potable.

Physico-chimie : Eau extrêmement peu minéralisée.

Clermont-Ferrand, le 30 Octobre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusion

ALAME Josette

ANALYSE DE TYPE B3 C1

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72033

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES EST + DRAIN GAUCHE

DRAIN GAUCHE

Réception au laboratoire le 26 Octobre 2000 à 17h12

Prélèvement effectué le

26 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

Résultat

Limite de Qualité

Méthode

Aspect (qualitatif)

Chlore résiduel total (mg/l)

Chlore résiduel libre (mg/l)

Bioxyde de chlore (mg C12/1)

Conductivité à 25°C (µS/cm)

pH à 20°C (Unités pH)

Turbidité (NTU)

Chlorite (µg/1)

Norma I Non Déterminé

Non Déterminé

Non Déterminé

Non Déterminé

DETERMINATIONS PHYSICO-CHIMIQUES

Résultat

51.6

6.10

< 0.2

Limite de Qualité

Méthode EN 27888

NF T 9000

EN 27027

DETERMINATIONS BACTERIOLOGICUES

DE	STERRITINALION	P DUCTERIOLOGIQUES		
	Résultat		Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	2		0 - 50000	NF T 9041
Coliformes Thermotolérants (UFC/100 ml)	2		0 - 20000	NF T 9041
Streptocoques Fécaux (UFC/100 ml)	0		<10000	
Spore bactérie anaérobie sulfito réduct.	(UEC/20ml) 0		<10000	NF T 90410
Dénombrement à 37° (UFC/ml)	(01 0/20111) 0			NF T 9041!
	U			NF T 9040]
Dénombrement à 22° (UFC/ml)	0			NF T 90402
Pseudomonas aeruginosa (UFC/100 m1)	Non Déte	erminé		ILB Méthoc

Remarques et conclusions

Bactériologie : Echantillon contaminé. Eau non potable.

Physico-chimie : Eau três faiblement minéralisée.

Clermont-Ferrand, le 30 Octobre 2000

Analyse validée par :

ALAME Josette

Le Responsable de la diffusion

ALAME Josette

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72031

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89~3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES EST -CHARDET BAS

REGARD DE JONCTION

Réception au laboratoire le 26 Octobre 2000 à 17h00

Prélèvement effectué le

26 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4a)

Azote KJELDAHL (mg N/1)	Résultat <1.00	Limite de Qualité	Méthode EN 25663
Hydrocarbures totaux (mg/l) Agents de surface anioniques (mg SABM/l)	0.09 <0.10	0.00 - 1.00	NF T 90114
Indice Phénol (mg/l)	<0.025	0.000 - 0.100	EN 903 NF T 90109

DETERMINATIONS PHYSICO-CHIMIQUES (type C4b) Résultat

	NOSATEGE	Eimite de Qualite	Methode
Cadmium (mg/1)	<0.0005	0.0000 - 0.0050	NF T 90119
Plomb (mg/l)	<0.005	0.000 - 0.050	NF T 90119
HPA (Hydrocarbures Polycycliques Aromati	ques en μg/l)	0.000 - 0.000	Nr 1 90119
* Fluoranthène (μg/l)	<0.001		NFT90115
* Benzo (3,4) Fluoranthène (μg/l)	<0.010		NFT90115
* Benzo (11,12) Fluoranthène (μg/l)	<0.005		NFT90115
* Benzo (3,4) Pyrène (μg/l)	<0.001		NFT90115
* Benzo (1,12) Pérylène (μg/l)	<0.020		NFT90115
* Indéno (1,2,3-cd) Pyrène (μg/1)	<0.020		
* Total (µg/l)	0.000	0.000 - 1.000	NFT90115 NFT90115

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

Le Responsable de la diffusion : CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72031

Produit : Eau de consonmation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES EST -CHARDET BAS

REGARD DE JONCTION

Réception au laboratoire le 26 Octobre 2000 à 17h00

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIOUES (type C4c)

	DETERMINATIONS	FILL STCO-CUTMITORS	(rype	C4C)	
		Résultat		Limite de Qualité	Méthode
Arsenic (mg/l)		<0.005		0.000 - 0.100	NF T 90119
Chrome total (mg/l)		<0.002		0.000 - 0.050	NF T 90119
Mercure (mg/l)		<0.0002		0.0000 - 0.0010	ILB Method
Sélénium (mg/l)		<0.005		0.000 - 0.010	NF T 90119
Cyanures totaux (mg/	/1)	<0.01		0.000 - 0.050	NF T 90107
Solvants Halogénés V	/olatils				
* Chloroforme (μg/l)		<0.01			ILB Méthod
* 1,1,1-Trichloroéthar	ne (μg/l)	<0.01			ILB Méthod
 * Tétrachlorure de car 	rbone (μg/l)	<0.01			ILB Méthod
* Trichloroéthylène (μ	ɪg/l)	<0.01			ILB Méthod
* Bromodichlorométhane	e (μg/l)	<0.01			ILB Méthod
* cis-1,3-Dichloroprop	pène (μg/l)	<0.01			ILB Méthod
* trans-1,3-Dichloropr	ropène (μg/l)	<0.01			ILB Méthod
* 1,1,2-Trichloroéthan	ne (μg/1)	<0.05			ILB Méthod
 * Tétrachloroéthylène 	(μg/l)	<0.01			ILB Méthod
* Chlorodibromométhane	· (μg/l)	<0.01			ILB Méthod
* Chlorobenzène (μg/l)		<1			ILB Méthod
* Bromoforme (μg/l)		<0.01			ILB Méthod
* 1,1,2,2-Tétrachloroé	thane (µg/l)	<0.01			ILB Méthod
* 1,3-Dichlorobenzène	(μg/l)	<0.05			ILB Méthod
* 1,4-Dichlorobenzène	(μg/1)	<0.05			ILB Méthod
* 1,2-Dichlorobenzène	(μg/l)	<0.05			ILB Méthod
Pesticides Organoazo	tés (type triazine)				TEO MOCHOU
* Atrazine (μg/l)		<0.01			
* Simazine (μg/1)		<0.01			
* Propazine (μg/l)		<0.01			
* Déséthylatrazine (μg	/1)	<0.01			
* Désisopropylatrazine		<0.01			

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno

CLEMENT Bruno

Le Responsable de la diffusion :

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72031

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES EST -CHARDET BAS

REGARD DE JONCTION

Réception au laboratoire le 26 Octobre 2000 à 17h00

Prélèvement effectué le 26 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c) (SUITE)

Résultat Limite de Qualité Méthode Pesticides organochlorés * HCB (µg/1) < 0.01 * alpha HCH (μg/l) < 0.02 * Lindane (μg/l) < 0.02 * Heptachlore (μg/l) < 0.02 * Aldrin (μg/l) < 0.02 * Heptachlore epoxide (μg/l) < 0.02 * Endosulfan (µg/l) <0.02 * Dieldrin (μg/l) < 0.02 * Endrin (μg/l) < 0.02 * DDT pp' (μg/1) < 0.02 * B HCH (μg/1) < 0.02 * DDE pp' (μg/1) <0.02 * DDD op' (μg/l) <0.02 * DDD pp' (μg/1) < 0.02 Pesticides organophosphorés * Dimethoate (µg/1) <0.01 * EPN (μg/1) < 0.01 * Malathion (µg/1) < 0.01 * Monocrotophos (μg/1) < 0.01 * Parathion (μg/1) < 0.01 * Sulfotepp (μg/l) <0.01 * TEPP (μg/1) < 0.01

DETERMINATIONS PHYSICO-CHIMIQUES (type C4d)

Résultat Limite de Qualité Méthode Demande Biochimique en Oxygène - DBO/5 (mg 02/1) <3.0 NF T 90103 Demande Chimique en Oxygène (mg 02/1) <30 NF T 90101 Bore (mg/1) <0.050 ILB Method Baryum (mg/1) <0.050 0.000 - 1.000ILB Méthod Substances extractibles au chloroforme (mg/l) < 0.10 ILB Méthod Matières en suspension (mg/1) <1.0 NF EN 872

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno Le Responsable de la diffusion :

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72031

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES EST -CHARDET BAS

REGARD DE JONCTION

Réception au laboratoire le 26 Octobre 2000 à 17h00

Prélèvement effectué le

26 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Limite de Qualité	Méthode
Odeur (qualitatif)	Sans odeur	Ermite de quarrec	nethode
Saveur (qualitatif)	Sans saveur		
Température de l'eau (°C)	Non Déterminé	0.0 - 25.0	NF T 90100
Température de l'air (°C)	Non Déterminé	270	NF T 90100
Chlore résiduel total (mg/l)	Non Déterminé		11 1 30100
Chlore résiduel libre (mg/l)	Non Déterminé		
Bioxyde de chlore (mg C12/1)	Non Déterminé		
Chlorite (μg/1)	Non Déterminé		
Hydrogēne sulfuré	Absence		ILB Méthod
	ANALYSE DES ANIONS		
	Résultat	Limite de Qualité	Méthode
Chlorures (mg/l)	1.5	·	Std Method
Nitrites (mg NO2/1)	<0.050		NF T 90012
Nitrates (mg NO3/1)	2.70	0.0 - 50.0	NF T 90012
Sulfates (mg/l)	2.2	0.0 - 250.0	ISO 10304
Hydrogénocarbonates (HCO3) (mg/1)	20.7		Calculé
Carbonates (CO3) (mg/1)	0.00		Calculé
Phosphore total (mg P2O5/1)	<0.10		NF T 90023
Fluorures (mg/l)	<0.05		ISO 10359

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno Le Responsable de la diffusion CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72031

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES EST -CHARDET BAS

REGARD DE JONCTION

Réception au laboratoire le 26 Octobre 2000 à 17h00

Prélèvement effectué le

26 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANALYSE DES CATIONS

	Résultat	Limite de Qualité	Méthode
Ammonium (mg NH4/1)	<0.10	0.00 - 4.00	ISO 7150-2
Calcium (mg/l)	2.90		Std Method
Magnésium (mg/l)	1.70		Std Method
Sodium (mg/l)	4.0		NF T 90019
Potassium (mg/l)	1.1		NF T 90019
Manganèse (mg/l)	<0.005		NF T 90119
Fer (mg/l)	0.041	*	Std Method
Zinc (mg/l)	<0.030	0.000 - 5.000	NF T 90112
Aluminium (mg/l)	0.062		NF T 90119
Cuivre (mg/l)	<0.002		NF T 90119

	ANALYSE PHYSICO-CHIMIQUE		
	Résultat	Limite de Qualité	Méthode
Conductivité à 25°C (μS/cm)	47.2		EN 27888
pH à 20°C (Unités pH)	6.20		NF T 90008
pH après marbre (à 20°C) (Unités pH)	6.90		
Titre Alcalimétrique Complet (TAC) (°F)	1.7		ILB Méthod
T.A.C. après marbre (°F)	6.0		ILB Méthod
Titre Hydrotimétrique Total (THT) (°F)	1.4		Calculé
Titre Hydrotimétrique Permanent (THP) (°F)	-		Calculé
Silice (mg SiO2/1)	22.00		ILB Method
Oxygène dissous (mg 02/1)	8.4		EN 25813
Couleur (quantitatif) (Hazen)	5		ILB Méthod
Résidu sec à 175-185°C (mg/l)	50.0		NF T 90029
Oxydabilité à chaud en milieu acide (mg 02/1	() <0.5		ISO 8467
Turbidité (NTU)	<0.2		EN 27027
Titre Alcalimétrique (TA) (°F)	<0.1		ILB Méthod
Anhydride carbonique libre (mg CO2/1)	28.9		NF T 90011

Remarques et conclusions

Physico-chimie : Eau extrêmement peu minéralisée.

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par :

CLEMENT Bruno

Le Responsable de la diffusion :

CLEMENT Bruno

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72031

 $Produit: Eau \ de \ consommation \ humaine \ au \ point \ de \ puisage \ avant \ traitement \ (Application \ du \ décret: \ produit \ de \ puisage)$

89-3 modifié).

Origine de prélèvement Commune de SAINT ALYRE D'ARLANC

Captage PALAYES EST -CHARDET BAS

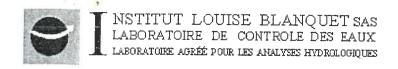
REGARD DE JONCTION

Réception au laboratoire le 26 Octobre 2000 à 17h00

Prélèvement effectué le

26 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANNEXE - BILAN IONIOUE


	~	
	mg/1	meq/1
Chlorures	1.5	0.04
Nitrites	<0.050	<0.01
Nitrates	2.70	0.04
Sulfates	2.2	0.05
Hydrogénocarbonates (HCO3)	20.7	0.34
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.47
	mg/l	meq/1
Ammonium	<0.10	< 0.01
Calcium	2.90	0.14
Magnés i um	1.70	0.14
Sodium	4.0	0.17
Potassium	1.1	0.03
Manganèse	<0.005	<0.01
Fer	0.041	<0.01
Zinc	<0.030	<0.01
Aluminium	0.062	<0.01
Cuivre	<0.002	<0.01
TOTAL CATIONS		0.48

Clermont-Ferrand, le 20 Novembre 2000

Analyse validée par : CLEMENT Bruno Le Responsable de la diffusion : CLEMENT Bruno

Commune de NOVACELLES

BOYER 1

Bulletin d'analyse

Demandeur de l'analyse

Adresse de facturation

DDASS DU PUY DE DOME

Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT FERRAND *Réf: 234932* SIAEP HAUT-LIVRADOIS 63220 ARLANC

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

ARRIVEE DRAIN

Réception au laboratoire :

07/10/2008 14:48:00

Prélèvement effectué le :

07/10/2008 08:45:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

,	Analyse	Résultat				Limite de Qualité	Réalisé le	Méthode
	Analyses bactériologiques							
©	Coliformes Totaux	42 UFC/100 ml			•		07/10/2008	NF EN ISO 9308-1
©	Escherichia coli	0 UFC/100 ml				x <= 20000	07/10/2008	NF EN ISO 9308-1
©	Entérocoques	0 UFC/100 ml				x <= 10000	07/10/2008	NF EN ISO 7899-2
C	Spore Bactérie Sulfito-réductrice	0 UFC/100 ml					07/10/2008	NF EN 26461-2
©	Dénombrement à 22°	5 UFC/ml					07/10/2008	NF EN ISO 6222
O	Dénombrement à 37°	0 UFC/ml					07/10/2008	NF EN ISO 6222
			Analyses	des traces o	rganiqu	es		
©	Indice Hydrocarbures	<0.1 mg/l				x <= 1,00	22/10/2008	NF EN ISO 9377-2
ł	lydrocarbures Polycycliques Ai	omatiques				•	07/10/2008	NF EN ISO 17993
	Fluoranthène	<0.001 µg/l					0771072000	
	Benzo(b)fluoranthène	<0.010 µg/l						
	Benzo(k)fluoranthène	<0.005 µg/l						
	Benzo(a)pyrène	<0.001 µg/l						
	Benzo(ghi)pérylène	<0.020 µg/l						
	Indeno(1,2,3-cd)pyrène	<0.020 µg/l						
	Total des 6 subsances	<0.020 µg/l				x <= 1,000		
Ō	Benzène	<0.5 µg/l						NF ISO 11423-1
© S	olvants Halogénés Volatils						15/10/2008	Méthode ILB
-	Trichloroéthylène	<0.50 µg/l					10/10/2000	
-	Tétrachloroéthylène	<0.50 µg/l						
-	1,2-Dichloroéthane	<0.50 µg/l						
-	Total tetra+trichloroéthylène	<0.50 µg/l						
©	Chlorure de vinyle	<0.30 µg/l					15/10/2008	Méthode ILB

Clermont-Ferrand, le 04/11/2008

Analyse validée par : ALAMÉ Josette Responsable de la diffusion : ALAMÉ Josette

Page 1 de 2

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

Remarques concernant ce rapport

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTES DE MEDECINE 63001 CLERMONT-FERRAND ET DE PHARMACIE CEDEX 01 - FRANCE - - 28, PLACE HENRI DUNANT TEL: 04 73 28 84 50 FAX: 04

DUNANT - B.P. 38 FAX: 04 73 28 84 55

Bulletin d'analyse

(Suite.)

Réf: 234932

SIAEP HAUT-LIVRADOIS

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1 et suivants)

Prélevé à:

Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

ARRIVEE DRAIN

Réception au laboratoire :

07/10/2008 14:48:00

Prélèvement effectué le :

07/10/2008 08:45:00 par POUILLE N., INSTITUT LOUISE BLANQUET (Prélèvement sous accréditation)

	Analyse	Résultat		Limite de Qualité	Réalisé le	Méthode
			Analyses physico-chimiques	S		
C	pH à 20°C	6.50 Unités pH	•		07/10/2008	NF T 90-008
(C)	Conductivité à 25°C	87.3 µS/cm			07/10/2008	NF EN 27888
C	Résistivité à 25°C	11455 ohm.cm			08/10/2008	NF EN 27888
(C)	Potassium	1.4 mg/i			15/10/2008	NF T 90-019
$\langle C \rangle$	Indice Phénol	<0.025 mg/l		x <= 0,100	15/10/2008	T 90-109
C	Cyanures totaux	<10,0 µg/l		•	14/10/2008	NF EN ISO 14403
C	Agents de surface anioniques	<0,10 mg SABM/l		x <= 0,10	10/10/2008	NF EN 903
		Analyses	de radioactivité (analyses so	us traitées)		
	Activité Beta Résiduelle	0.01 Bq/L	, ,	ı'	17/10/2008	calcul
	Activité Alpha Globale	<0,02 Bq/L			17/10/2008	NF M 60-801
	Activité Beta Globale	0.05 Bq/L			17/10/2008	NF M 60-800
	Activité Potassium 40	0.04 Bq/L			13/10/2008	calcul
	Activité volumique Tritium	<1.00 Bq/L			21/10/2008	NF M 60-802-1
	Dose Totale Indicative	<8,10 mSv/an			16/10/2008	Calcul
20			Mesures sur le terrain			
**	Aspect (qualitatif)	Normal			07/10/2008	Méthode ILB
	Hydrogène sulfuré	Absence			07/10/2008	Méthode ILB
C	рН	8.20 Unités pH			07/10/2008	NF T 90-008
	Température de l'air	4.7 °C			07/10/2008	Méthode ILB
	Température de l'eau	8.2 °C		x <= 25,0	07/10/2008	Méthode ILB
		Ar	nalyses de traces inorganiqu	es		
(C)	Aluminium	0.049 mg/l	×		07/10/2008	NF EN ISO 11885
C	Baryum	<0.050 mg/l		x <= 1	07/10/2008	NF EN ISO 11885
(C)	Chrome total	<0.010 mg/l		x <= 0,050	07/10/2008	NF EN ISO 11885
C	Cuivre	<0.010 mg/l			07/10/2008	NF EN ISO 11885
(C)	Fer	0.042 mg/l			07/10/2008	NF EN ISO 11885
	Mercure	<0.0002 mg/l		x <= 0,0010	08/10/2008	NF EN 1483
(C)	Plomb	<0.005 mg/l			17/10/2008	NF EN ISO 17294-2
\mathbb{C}	Zinc	<0.010 mg/l		x <= 5,000	07/10/2008	NF EN ISO 11885

Clermont-Ferrand, le 04/11/2008

Analyse validée par : ALAMÉ Josette Responsable de la diffusion : ALAMÉ Josette

Page 2 de 2

63001

ACCREDITATION
N° 1-1112
PORTEE COMMUNIQUEE
SUR DEMANDE

DE

CLERMONT-FERRAND

MEDECINE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

ET DE PHARMACIE - 28, PLACE HENRI DUNANT - B.P. 38 CEDEX 01 - FRANCE - TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 135114

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

ARRIVEE DRAIN

Réception au laboratoire le 17 Mai 2005 à 14h34

Prélèvement effectué le

17 Mai 2005 à 10h15 par BROTTE C., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Incert.	Limite de Qualité	Méthode
Température de l'eau (°C)	7.0		<25.0	Méthode ILB
-	Non Déterminé			Méthode ILB
Température de l'air (°C)	Absence			Méthode ILB
Hydrogène sulfuré	Non Déterminé			NF T 90-008
pH à 20°C (Unités pH)	101 200011110			

ANALYSE PHYSICO-CHIMIQUE

		Résultat	Incert.	Limite de	· Qualité	Méthode
	25°0 (20°/cm)	81.1				NF EN 27888
	Conductivité à 25°C (µS/cm)					NF T 90-008
0	pH à 20°C (Unités pH)	6.50				NF T 90-008
0	pH après marbre (à 20°C) (Unités pH)	7.20				
	Titre Alcalimétrique Complet (TAC) (°F)	1.8				Flux continu
		3.9				Flux continu
0	T.A.C. après marbre (°F)					Calculé
	Titre Hydrotimétrique Total (THT) (°F)	2.0				NF EN ISO 7027
©	Turbidité (NTU)	0.9				
6	Titre Alcalimétrique (TA) (°F)	<0.1				Flux continu
		23.60				NF EN ISO 11885
	Silice (mg SiO2/1)					NF EN 1484
6	Carbone Organique Total (mg C/l)	1.10			10.0	NF EN ISO 8467
0	Oxydabilité à chaud en milieu acide (mg 02/1)	<0.5		<.		
	Oxygène dissous (mg O2/1)	10.4				NF EN 25813
6						NF T 90-011
	Anhydride carbonique libre (mg CO2/1)	11.6				

Clermont-Ferrand, le 9 Juin 2005

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

Méthode

15 JUIN 2005

ACCREDITATION PORTÉE COMMUNIQUÉE SUR DEMANDE

Remaranes concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accreditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accretitation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

PLACE HENRI DUNANT 28, MÉDECINE ET DE PHARMACIE DE FAX: 04 73 28 84 55 TEL: 04 73 28 84 50 CEDEX 01 - FRANCE -CLERMONT-FERRAND

Mát hode

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Timito do Ouglitó

Rf : 135114

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

ARRIVEE DRAIN

Réception au laboratoire le 17 Mai 2005 à 14h34

Prélèvement effectué le 17 Mai 2005 à 10h15 par BROTTE C., DDASS 63

ANAT.	VCF	DEC	ΣNT	ONS

		Résultat	Incert.	rimite de Onalite	Mechode
©	Chlorures (mg/l)	3.9		<200.0	NF EN ISO 10304-1
0	Nitrites (mg NO2/1)	<0.003			NF EN ISO 13395
0	Nitrates (mg NO3/1)	4.80		<50.00	NF EN ISO 10304-1
0	Sulfates (mg/l)	9.3		<250.0	NF EN ISO 10304-1
	Hydrogénocarbonates (HCO3) (mg/l)	22.0			Calculé
	Carbonates (CO3) (mg/l)	0.00			Calculé
©	Phosphore total (mg P205/1)	<0.10			NF EN ISO 10304-1
0	Fluorures (mg/l)	<0.05			NF EN ISO 10304-1

ANALYSE DES CATIONS

		Résultat	Incert.	Limite de Qualité	Méthode
0	Ammonium (mg NH4/1)	<0.05		<4.00	NF EN ISO 11732
0	Calcium (mg/l)	5.60			NF EN ISO 7980
0	Magnésium (mg/l)	1.50			NF EN ISO 7980
0	Sodium (mg/l)	6.1			NF T 90-019
6	Potassium (mg/l)	1.4			NF T 90-019

ANALYSES BACTERIOLOGIQUES

		Résultat	Incert.	Limite	de Qualité	Méthode	
©	Coliformes Totaux (UFC/100 ml)	Non Déterminé				NF EN ISO 9	308-1
©	Escherichia coli (UFC/100 ml)	0				NF EN ISO 9	308-1
0	Entérocoques (UFC/100 ml)	0			0 - 10000	NF EN ISO 78	899 - 2
@	Spore Bactérie Sulfito-réductrice (UFC/100	Non Déterminé				NF EN 26461-	-2
	ml)					ā1	
0	Dénombrement à 37° (UFC/ml)	Non Déterminé				NF EN ISO 62	222
@	Dénombrement à 22° (UFC/ml)	Non Déterminé				NF EN ISO 62	222

Clermont-Ferrand, le 9 Juin 2005

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

Nº 1-1112 PORTÉE COMMUNIQUÉE

Remaraues concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accreditation. Le nombre de pages est indiqué au bas de chaque feuillet.

DE PHARMACIE 28. PLACE HENRI DUNANT FACULTÉS DE MÉDECINE ET TEL: 04 73 28 84 50 FAX: 04 73 28 84 55 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE -

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 135114

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

ARRIVEE DRAIN

Réception au laboratoire le 17 Mai 2005 à 14h34

Prélèvement effectué le

17 Mai 2005 à 10h15 par BROTTE C., DDASS 63

ANALYSES DES METAUX

Résultat Incert. Limite de Qualite	
© Antimoine (mg/l) <0.005	NF EN ISO 15586
© Arsenic (mg/l) <0.005 <100.000	NF EN ISO 15586
© Bore (mg/1) <0.050	NF EN ISO 11885
© Cadmium (mg/l) <0.0005 <0.0050	NF EN ISO 5961
© Manganèse (mg/l) <0.005	NF EN ISO 11885
© Nickel (mg/l) <0.005	NF EN ISO 11885
© Sélénium (mg/l) <0.005 <0.010	NF EN ISO 15586
© Fer dissous (mg/l) 0.013	NF EN ISO 11885

Clermont-Ferrand, le 9 Juin 2005

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

AC CREDITATION PORTÉE COMMUNIQUÉE SUR DEMANDE

Remarques concernant ce rapport :

Seuls les paramètres marquès du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est attorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accreditation. Le nombre de pages est indiqué au bas de chaque feuillet.

28. PLACE HENRI DUNANT PHARMACIE MEDECINE ET DE DE TEL: 04 73 28 84 50 FAX: 04 73 28 84 55 CEDEX 01 - FRANCE -CLERMONT-FERRAND

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 135114

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

ARRIVEE DRAIN

Réception au laboratoire le 17 Mai 2005 à 14h34

Prélèvement effectué le

17 Mai 2005 à 10h15 par BROTTE C., DDASS 63

ANALYSE CHROMATOGRAPHIQUE

	AIN	ALISE CHROMATOGRA	LIITÕOD		
		Résultat	Incert.	Limite de Qualité	Méthode
	Indice Hydrocarbures (mg/l)	<0.10		<1.00	NF EN ISO 9377-2
	Pesticides totaux $(\mu g/1)$	<0.01		<5.00	Calculé
©	Pesticides Organoazotés				
*	Atrazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
*	Simazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
*	Propazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
*	Déséthylatrazine (µg/l)	<0.01			NF EN ISO 10695
*	Désisopropylatrazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
*	Cyanazine (µg/1)	<0.01		<2.00	NF EN ISO 10695
*	Terbuthylazine (µg/l)	<0.01			NF EN ISO 10695
*	Terbuméton (µg/l)	<0.01			NF EN ISO 10695
	Pesticides organophosphorés				
*	Dimethoate (µg/1)	<0.01		<2.00	NF EN ISO 10695
*	EPN (µg/1)	<0.01		<2.00	NF EN ISO 10695
*	Malathion (µg/l)	<0.01			NF EN ISO 10695
*	Monocrotophos (µg/1)	<0.01			NF EN ISO 10695
*	Parathion (µg/l)	<0.01			NF EN ISO 10695
.*	Sulfotepp (µg/l)	<0.01			NF EN ISO 10695
*	TEPP (µg/l)	<0.01			NF EN ISO 10695
	Phényl-urées				
*	Diuron (ug/l)	<0.1			NF EN ISO 11369
*	Isoproturon (ug/l)	<0.1			NF EN ISO 11369.
*	Linuron (ug/l)	<0.1			NF EN ISO 11369
©	Solvants Halogénés Volatils				
*	Trichloroéthylène (µg/l)	<0.01			Selon EPA 524-2
*	Tétrachloroéthylène (µg/l)	<0.01			Selon EPA 524-2
*	1,2-Dichloroéthane (µg/l)	<0.05			Selon EPA 524-2
*	Total tetra+trichloroéthylène (µg/l)	<0.02			Selon EPA 524-2

Remarques et conclusions

Clermont-Ferrand, le 9 Juin 2005

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

ACCREDITATION N° 1-1112 PORTÉE COMMUNIQUÉE SUR DEMANDE

Remarques concernant ce rapport;

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accessitation et la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

MÉDECINE DE CLERMONT-FERRAND

PHARMACIE ET DE CEDEX 01 - FRANCE -

PLACE HENRI DUNANT 28. TEL: 04 73 28 84 50

FAX: 04 73 28 84 55

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1 Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 135114

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

ARRIVEE DRAIN

Réception au laboratoire le 17 Mai 2005 à 14h34

Prélèvement effectué le

17 Mai 2005 à 10h15 par BROTTE C., DDASS 63

ANNEXE - BILAN IONIQUE

	mg/l	meq/1
Chlorures	3.9	0.11
Nitrites	<0.003	<0.01
Nitrates	4.80	0.08
Sulfates	9.3	0.19
Hydrogénocarbonates (HCO3)	22.0	0.36
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.74
	mg/l	meq/l
Ammonium	<0.05	<0.01
Calcium	5.60	0.28
Magnésium	1.50	0.12
Sodium	6.1	0.27
Potassium	1.4	0.04
TOTAL CATIONS		0.71

Clermont-Ferrand, le 9 Juin 2005

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

15 JUIN 2005

ACCREDITATION N° 1-1112 PORTÉE COMMUNIQUÉE SUR DEMANDE Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE PHARMACIE - 28, 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE - TEL: 04

- 28, PLACE HENRI DUNANT TEL: 04 73 28 84 50 FAX: 04

FAX: 04 73 28 84 55

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement

Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1 Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 135114

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

ARRIVEE DRAIN

Réception au laboratoire le 17 Mai 2005 à 14h34

Prélèvement effectué le

17 Mai 2005 à 10h15 par BROTTE C., DDASS 63

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	Incert.	Limite de Qualité	Méthode
Température de l'eau (°C)	7.0		<25.0	Méthode ILB
Température de l'air (°C)	Non Déterminé			Méthode ILB
Hydrogène sulfuré	Absence			Méthode ILB
pH à 20°C (Unités pH)	Non Déterminé			NF T 90-008

ANALYSE PHYSICO-CHIMIQUE

		Résultat	Incert.	Limite de	e Qualité	Méthode
0	Conductivité à 25°C (µS/cm)	81.1				NF EN 27888
0	pH à 20°C (Unités pH)	6.50				NF T 90-008
0	pH après marbre (à 20°C) (Unités pH)	7.20				NF T 90-008
0	Titre Alcalimétrique Complet (TAC) (°F)	1.8				Flux continu
٥	T.A.C. après marbre (°F)	3.9				Flux continu
	Titre Hydrotimétrique Total (THT) (°F)	2.0				Calculé
•	Turbidité (NTU)	0.9				NF EN ISO 7027
0	Titre Alcalimétrique (TA) (°F)	<0.1				Flux continu
	Silice (mg SiO2/1)	23.60				NF EN ISO 11885
0	Carbone Organique Total (mg C/l)	1.10				NF EN 1484
0	Oxydabilité à chaud en milieu acide (mg $O2/1$)	<0.5		<1	10.0	NF EN ISO 8467
0	Oxygène dissous (mg O2/1)	10.4				NF EN 25813
	Anhydride carbonique libre (mg CO2/1)	11.6				NF T 90-011

Clermont-Ferrand, le 9 Juin 2005

Analyse validée par : ALAME Josette Le Responsable de la diffusion : ALAME Josette

cofrac

ACCREDITATION
N° 1-1112
PORTÉE COMMUNIQUÉE
SUR DEMANDE

Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 135114

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

ARRIVEE DRAIN

Réception au laboratoire le 17 Mai 2005 à 14h34

Prélèvement effectué le 17 Mai 2005 à 10h15 par BROTTE C., DDASS 63

		Résultat	Incert.	Limite de Qualité	Methode
©	Chlorures (mg/l)	3.9		<200.0	NF EN ISO 10304-1
0	Nitrites (mg NO2/1)	<0.003			NF EN ISO 13395
0	Nitrates (mg NO3/1)	4.80		<50.00	NF EN ISO 10304-1
©	Sulfates (mg/1)	9.3		<250.0	NF EN ISO 10304-1
	Hydrogénocarbonates (HCO3) (mg/1)	22.0			Calculé
	Carbonates (CO3) (mg/l)	0.00			Calculé
0	Phosphore total (mg P2O5/1)	<0.10			NF EN ISO 10304-1
©	Fluorures (mg/l)	<0.05			NF EN ISO 10304-1

ANALYSE DES CATIONS

		Résultat	Incert.	Limite de Qualité	Méthode
0	Ammonium (mg NH4/1)	<0.05		<4.00	NF EN ISO 11732
0	Calcium (mg/l)	5.60			NF EN ISO 7980
0	Magnésium (mg/l)	1.50			NF EN ISO 7980
©	Sodium (mg/l)	6.1			NF T 90-019
0	Potassium (mg/l)	1.4			NF T 90-019

ANALYSES BACTERIOLOGIQUES

		Résultat	Incert.	Limite de Qualité	Méthode
0	Coliformes Totaux (UFC/100 ml)	Non Déterminé			NF EN ISO 9308-1
	Escherichia coli (UFC/100 ml)	0			NF EN ISO 9308-1
	Entérocoques (UFC/100 ml)	0		0 - 10000	NF EN ISO 7899-2
	Spore Bactérie Sulfito-réductrice (UFC/100	Non Déterminé			NF EN 26461-2
•		101 0001			
	ml)				
0	Dénombrement à 37° (UFC/ml)	Non Déterminé			NF EN ISO 6222
6	Dénombrement à 22° (UFC/ml)	Non Déterminé			NF EN ISO 6222

Clermont-Ferrand, le 9 Juin 2005

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

ACCREDITATION PORTÉE COMMUNIQUÉE SUR DEMANDE

Remaranes concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation, de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accreditation. Le nombre de pages est indiqué au bas de chaque feuillet.

PLACE HENRI DUNANT 28, MEDECINE ET DE PHARMACIE FACULTÉS DE 63001 CLERMONT-FERRAND CEDEX 01 - FRANCE -TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse :
DDASS DU PUY DE DOME
Service Santé Environnement
60, Avenue de l'Union Soviétique
63057 CLERMONT-FERRAND Cédex 1

Addresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 135114

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

ARRIVEE DRAIN

Réception au laboratoire le 17 Mai 2005 à 14h34

Prélèvement effectué le

17 Mai 2005 à 10h15 par BROTTE C., DDASS 63

ANALYSES DES METAUX

		Résultat	Incert.	Limite de Qualité	Méthode
0	Antimoine (mg/l)	<0.005			NF EN ISO 15586
0	Arsenic (mg/l)	<0.005		<100.000	NF EN ISO 15586
0	Bore (mg/l)	<0.050			NF EN ISO 11885
0	Cadmium (mg/l)	<0.0005		<0.0050	NF EN ISO 5961
0	Manganèse (mg/l)	<0.005			NF EN ISO 11885
0	Nickel (mg/l)	<0.005			NF EN ISO 11885
0	Sélénium (mg/l)	<0.005		<0.010	NF EN ISO 15586
Ø	Fer dissous (mg/l)	0.013			NF EN ISO 11885

Clermont-Ferrand, le 9 Juin 2005

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

cofrac

ACCREDITATION
N° 1-1112
PORTÉE COMMUNIQUÉE
SUR DEMANDE

Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

RAPPORT D'ANALYSE

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé Environnement 60, Avenue de l'Union Soviétique 63057 CLERMONT-FERRAND Cédex 1 Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 135114

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

ARRIVEE DRAIN

Réception au laboratoire le 17 Mai 2005 à 14h34

Prélèvement effectué le

17 Mai 2005 à 10h15 par BROTTE C., DDASS 63

ANALYSE CHROMATOGRAPHIQUE

		Résultat	Incert.	Limite de Qualité	Méthode
	Indice Hydrocarbures (mg/l)	<0.10		<1.00	NF EN ISO 9377-2
	Pesticides totaux (μg/l)	<0.01		<5.00	Calculé
e P	esticides Organoazotés				
*]	Atrazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
* 5	Simazine (μg/l)	<0.01		<2.00	NF EN ISO 10695
*]	Propazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
* [Déséthylatrazine (µg/l)	<0.01			NF EN ISO 10695
* 1	Désisopropylatrazine (μg/l)	<0.01		<2.00	NF EN ISO 10695
* (Cyanazine (µg/l)	<0.01		<2.00	NF EN ISO 10695
* 7	Terbuthylazine (μg/l)	<0.01			NF EN ISO 10695
* 7	Terbuméton (μ g/l)	<0.01			NF EN ISO 10695
Pe	esticides organophosphorés				
* L	Dimethoate (µg/l)	<0.01		<2.00	NF EN ISO 10695
* E	ΣPN (μg/l)	<0.01		<2.00	NF EN ISO 10695
* M	Malathion (µg/1)	<0.01			NF EN ISO 10695
* M	fonocrotophos (µg/l)	<0.01			NF EN ISO 10695
* P	Parathion (µg/1)	<0.01			NF EN ISO 10695
.* S	Sulfotepp (µg/1)	<0.01			NF EN ISO 10695
* T	'EPP (μg/l)	<0.01			NF EN ISO 10695
Ph	ényl-urées				
* D	piuron (ug/l)	<0.1			NF EN ISO 11369
* I	soproturon (ug/l)	<0.1			NF EN ISO 11369
* L	inuron (ug/l)	<0.1			NF EN ISO 11369
© So	lvants Halogénés Volatils				1100
* T	richloroéthylène (µg/l)	<0.01			Selon EPA 524-2
* T	étrachloroéthylène (µg/l)	<0.01			Selon EPA 524-2
* 1	,2-Dichloroéthane (µg/1)	<0.05			Selon EPA 524-2
* T	otal tetra+trichloroéthylène (µg/l)	<0.02			Selon EPA 524-2

Remarques et conclusions

Clermont-Ferrand, le 9 Juin 2005

Analyse validée par :

ALAME Josette

Le Responsable de la diffusion : ALAME Josette

ACCREDITATION
N° 1-1112
PORTÉE COMMUNIQUÉE
SUR DEMANDE

Remarques concernant ce rapport :

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation.

Le nombre de pages est indiqué au bas de chaque feuillet.

FACULTÉS DE MÉDECINE ET DE PHARMACIE – 28, PLACE HENRI DUNANT – B.P. 38 53001 CLERMONT-FERRAND CEDEX 01 – FRANCE – TEL: 04 73 28 84 50 FAX: 04 73 28 84 55

RAPPORT D'ANALYSE (SUITE)

Demandeur de l'analyse :
DDASS DU PUY DE DOME
Service Santé Environnement
60, Avenue de l'Union Soviétique
63057 CLERMONT-FERRAND Cédex 1

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf : 135114

Produit : Eau de consommation humaine à la ressource (Code de la Santé Publique - articles R 1321-1

et suivants)

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

ARRIVEE DRAIN

Réception au laboratoire le 17 Mai 2005 à 14h34

Prélèvement effectué le

17 Mai 2005 à 10h15 par BROTTE C., DDASS 63

ANNEXE - BILAN IONIQUE

	mg/l	meq/l
Chlorures	3.9	0.11
Nitrites	<0.003	<0.01
Nitrates	4.80	0.08
Sulfates	9.3	0.19
Hydrogénocarbonates (HCO3)	22.0	0.36
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	<0.05	<0.01
TOTAL ANIONS		0.74
	mg/l	meq/l
Ammonium	<0.05	<0.01
Calcium	5.60	0.28
Magnésium	1.50	0.12
Sodium	6.1	0.27
Potassium	1.4	0.04
TOTAL CATIONS		0.71

Clermont-Ferrand, le 9 Juin 2005

Analyse validée par : ALAME Josette

Le Responsable de la diffusion : ALAME Josette

cofrac

ACCREDITATION
N° 1-1112
PORTÉE COMMUNIQUÉE
SUR DEMANDE

Remarques concernant ce rapport:

Seuls les paramètres marqués du symbole © sont couverts par l'accréditation. Ce rapport d'essai ne concerne que les objets soumis à l'essai. La reproduction de ce rapport d'essai n'est autorisée que sous sa forme intégrale. L'accréditation de la Section Laboratoire du COFRAC atteste de la compétence des laboratoires pour les seuls essais couverts par l'accréditation. Le nombre de pages est indiqué au bas de chaque feuillet.

RESULTATS D'ANALYSE DE TYPE B3C3C4bc

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72008

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

BOYER 1

Réception au laboratoire le 23 Octobre 2000 à 17h13

Prélèvement effectué le 23 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS BACTERIOLOGIQUES

	Résultat	Limite de Qualité	Méthode
Coliformes Totaux (UFC/100 ml)	0	0 - 50000	NF T 9041
Coliformes Thermotolérants (UFC/100 ml)	0	0 - 20000	NF T 9041
Streptocoques Fécaux (UFC/100 ml)	0	<10000	NF T 9041
Pseudomonas aeruginosa (UFC/100 ml)	Non Déterminé		ILB Méthc
Dénombrement à 37° (UFC/ml)	3		NF T 9040
Dénombrement à 22° (UFC/ml)	10		NF T 9040
Spore bactérie anaérobie sulfito réduct. (UFC/20ml) 0		NF T 9041

DETERMINATIONS REALISEES PAR LE PRELEVEUR, SUR LE TERRAIN

	Résultat	2	Limite de Qualité	Méthode
Odeur (qualitatif)	Sans odeur			
Saveur (qualitatif)	Sans saveur			
Température de l'eau (°C)	Non Déterminé		0.0 - 25.0	NF T 9010
Température de l'air (°C)	Non Déterminé			NF T 9010
Chlore résiduel total (mg/l)	Non Déterminé			
Chlore résiduel libre (mg/l)	Non Déterminé			
Bioxyde de chlore (mg C12/1)	Non Déterminé			
Chlorite (µg/l)	Non Déterminé			
Hydrogène sulfuré	Absence			ILB Métho

Remarques et conclusions

Bactériologie : Echantillon conforme en ce qui concerne le paramètre analysé.

Clermont-Ferrand, le 18 Décembre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusion

ALAME Josette

RESULTATS D'ANALYSE DE TYPE B3C3C4bc (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72008

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de MOVACELLES

Captage NOVACELLES - BOYER 1

BOYER 1

Réception au laboratoire le 23 Octobre 2000 à 17h13

Prélèvement effectué le 23 Octobre 2000 par DE ESCOBAR W, DDASS 63

DETERMINATIONS PHYSICO-CHIMIOUES (type C4b)

			01111117	(C)PC	CIDI	
		Résultat	25		Limite de Qualité	Mēthode
	Cadmium (mg/l)	<0.0005			0.0000 - 0.0050	NF T 9011:
	Plomb (mg/l)	<0.005			0.000 - 0.050	NF T 9011:
	HPA (Hydrocarbures Polycycliques Aromatiques en μ	g/1)				
7	* Fluoranthène (μg/l)	<0.001				NFT90115
7	* Benzo (3,4) Fluoranthène (μg/l)	<0.010				NFT90115
7	* Benzo (11,12) Fluoranthène (μg/l)	<0.005				NFT90115
1	* Benzo (3,4) Pyrène (μg/l)	<0.001				NFT90115
3	* Benzo (1,12) Pérylène (μg/l)	<0.020				NFT90115
,	հ Indéno (1,2,3-cd) Pyrène (μg/l)	<0.020				NFT90115
7	' Total (μg/l)	0.000			0.000 - 1.000	NFT90115

Clermont-Ferrand, le 18 Décembre 2000

Analyse validée par : ALAME Josette

Le Responsable de la diffusion ALAME Josette

RESULTATS D'ANALYSE DE TYPE B3C3C4bc (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72008

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret : 89-3 modifié).

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

BOYER 1

Réception au laboratoire le 23 Octobre 2000 à 17h13

Prélèvement effectué le 23 Octobre 2000 par DE ESCOBAR W., DDASS 63

DETERMINATIONS PHYSICO-CHIMIOUES (type C4c)

	DETERMINATIONS	LUISICO-CHIMIĞOF?	(type	C4C)	
		Résultat		Limite de Qualité	Méthode
Arsenic (mg/l)		<0.005		0.000 - 0.100	NF T 9011:
Chrome total (mg/l)		<0.002		0.000 - 0.050	NF T 9011:
Mercure (mg/l)		<0.0002		0.0000 - 0.0010	ILB Method
Sélénium (mg/l)		<0.005		0.000 - 0.010	NF T 9011:
Cyanures totaux (mg/l)		<0.01		0.000 - 0.050	NF T 9010.
Solvants Halogénés Volatils	i				
* Chloroforme (μg/l)		0.80			ILB Métho
* 1,1,1-Trichloroéthane ($\mu g/l$		<0.01			ILB Métho
* Têtrachlorure de carbone (μ	g/1)	<0.01			ILB Métho
* Trichloroéthylène (μg/l)		<0.01			ILB Méthod
* Bromodichloromethane ($\mu g/1$)		<0.01			ILB Métho
* cis-1,3-Dichloropropène (μg	/1)	<0.01			ILB Métho
* trans-1,3-Dichloropropène (μg/l)	<0.01			ILB Métho
* 1,1,2-Trichloroéthane ($\mu g/l$)	<0.05		9	ILB Métho
* Tétrachloroéthylène (μg/l)		<0.01			ILB Méthou
* Chlorodibromométhane ($\mu g/l$)		<0.01			ILB Méthod
* Chlorobenzène (μg/l)		<1			ILB Méthod
* Bromoforme (μg/l)		<0.01			ILB Méthod
* 1,1,2,2-Tétrachloroéthane (μg/1)	<0.01			ILB Méthoc
* 1,3-Dichlorobenzène (μg/l)		<0.05			ILB Méthoc
* 1,4-Dichlorobenzène (μg/l)		<0.05			ILB Méthoc
* 1,2-Dichlorobenzène (μg/l)		<0.05			ILB Méthoc
Pesticides Organoazotés (typ	pe triazine)			\$ 1	
* Atrazine (μg/l)		10.0>			
* Simazine (μg/l)		<0.01			
* Propazine (μg/l)		<0.01			
* Déséthylatrazine (μg/l)		<0.01			

Clermont-Ferrand, le 18 Décembre 2000

Désisopropylatrazine (µg/l)

Analyse validée par : ALAME Josette

<0.01

Le Responsable de la diffusion

ALAME Josette

RESULTATS D'ANALYSE DE TYPE B3C3C4bc (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME

Service Santé-Environnement

1.RUE D'ASSAS

63000 CLERMONT FERRAND

Adresse de facturation :

SIAEP HAUT-LIVRADOIS

Mairie d'ARLANC

63220 ARLANC

Rf: 72008

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

BOYER 1

Réception au laboratoire le 23 Octobre 2000 à 17h13

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W. DDASS 63

DETERMINATIONS PHYSICO-CHIMIQUES (type C4c) (SUITE) Résultat Limite de Qualité Méthode Pesticides organochlorés * HCB (µg/1) < 0.01 * alpha HCH (µg/1) < 0.02 * Lindane (μg/1) < 0.02 * Heptachlore (µg/1) <0.02 * Aldrin (µg/1) < 0.02 * Heptachlore epoxide (μg/l) < 0.02 * Endosulfan (μg/1) < 0.02 * Dieldrin (μg/1) < 0.02 * Endrin (μg/l) < 0.02 * DDT pp ' (μg/1) < 0.02 * B HCH (μg/1) < 0.02 * DDE pp' (μg/l) <0.02 * DDD op' (μg/l) < 0.02 * DDD pp' (μg/l) <0.02 Pesticides organophosphorés * Dimethoate (μg/1) <0.01 * EPN (μg/1) < 0.01 * Malathion (μg/l) <0.01 * Monocrotophos (μg/l) < 0.01 * Parathion (μg/l) < 0.01 * Sulfotepp (μg/l) <0.01 * TEPP (μg/1) <0.01

Clermont-Ferrand, le 18 Décembre 2000

Analyse validée par :

ALAME Josette

Le Responsable de la diffusion

ALAME Josette

28, PLACE HENRI DUNANT - B.P. 38 FACULTES DE MEDECINE ET DE PHARMACIE -63001 CLERMONT FERRAND CEDEX - FRANCE - TEL : (33) 04-73 28 84 50 - FAX : (33) 04 73 28 84 55 RESULTATS D'ANALYSE DE TYPE B3C3C4bc (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72008

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

BOYER 1

Réception au laboratoire le 23 Octobre 2000 à 17h13

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W, DDASS 63

	ANALYSE DES ANIONS	27	
	Résultat	Limite de Qualité	Méthode
Chlorures (mg/l)	2.8		Std Metho
Nitrites (mg NO2/1)	<0.050		NF T 9001
Nitrates (mg NO3/1)	2.70	0.0 - 50.0	NF T 9001
Sulfates (mg/l)	8.9	0.0 - 250.0	ISO 10304
Hydrogēnocarbonates (HCO3) (mg/1)	26.8		Calculé
Carbonates (CO3) (mg/l)	0.00		Calculé
Phosphore total (mg P205/1)	<0.10		NF T 9002
Fluorures (mg/l)	<0.05		ISO 10359
ž.			
	ANALYSE DES CATIONS		
	Résultat	Limite de Qualité	Méthode
Ammonium (mg NH4/1)	<0.10	0.00 - 4.00	ISO 7150-
Calcium (mg/1)	5.80		Std Metho
Magnésium (mg/l)	1.70		Std Metho
Sodium (mg/l)	6.4		NF T 9001
Potassium (mg/l)	1.4		NF T 9001
Manganèse (mg/l)	<0.005		NF T 9011
Fer (mg/l)	0.074		Std Metho
Zinc (mg/l)	<0.030	0.000 - 5.000	NF T 9011.
Aluminium (mg/l)	0.095		NF T 9011
Cuivre (mg/l)	<0.002		NF T 9011

Clermont-Ferrand, le 18 Décembre 2000

Analyse validée par : ALAME Josette Le Responsable de la diffusion ALAME Josette

Moe

RESULTATS D'ANALYSE DE TYPE B3C3C4bc (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1.RUE D'ASSAS 63000 CLERMONT FERRAND Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72008

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER 1

BOYER 1

Réception au laboratoire le 23 Octobre 2000 à 17h13

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANALYSE PHYSICO-CHIMIQUE

AN	WDIDE LUIDICO-CUINITĂOR		
	Résultat	Limite de Qualité	Méthode
Conductivité ā 25°C (μS/cm)	70.0		EN 27888
pH à 20°C (Unités pH)	6.40		NF T 900C
pH après marbre (à 20°C) (Unités pH)	7.20		
Titre Alcalimétrique Complet (TAC) (°F)	2.2		ILB Méthc
T.A.C. après marbre (°F)	5.4		ILB Méthc
Titre Hydrotimétrique Total (THT) (°F)	2.1		Calculé
Titre Hydrotimétrique Permanent (THP) (°F)	-		Calculé
Silice (mg SiO2/1)	22.80		ILB Metho
· Oxygène dissous (mg 02/1)	10.3		EN 25813
Couleur (quantitatif) (Hazen)	<5		ILB Méthc
Résidu sec à 175-185°C (mg/l)	80.0		NF T 9002
Oxydabilité à chaud en milieu acide (mg 02/1)	<0.5		ISO 8467
Turbidité (NTU)	0.9		EN 27027
Titre Alcalimétrique (TA) (°F)	<0.1		ILB Métho
Anhydride carbonique libre (mg CO2/1)	23.2		NF T 9001

Remarques et conclusions

Physico-chimie : Eau trés faiblement minéralisée.

Remarque : Les analyses SCV ont été confirmées par une double détermination.

Clermont-Ferrand, le 18 Décembre 2000

Analyse validée par : ALAME Josette Le Responsable de la diffusion ALAME Josette

How

RESULTATS D'ANALYSE DE TYPE B3C3C4bc (SUITE)

Demandeur de l'analyse : DDASS DU PUY DE DOME Service Santé-Environnement 1. RUE D'ASSAS 63000 CLERMONT FERRAND

Adresse de facturation : SIAEP HAUT-LIVRADOIS Mairie d'ARLANC 63220 ARLANC

Rf: 72008

Produit : Eau de consommation humaine au point de puisage avant traitement (Application du décret :

89-3 modifié).

Origine de prélèvement Commune de NOVACELLES

Captage NOVACELLES - BOYER I

BOYER 1

Réception au laboratoire le 23 Octobre 2000 à 17h13

Prélèvement effectué le

23 Octobre 2000 par DE ESCOBAR W. DDASS 63

ANNEXE - BILAN IONIQUE

	mg/1	meq/1
Chlorures	2.8	0.08
Nitrites	<0.050	<0.01
Nitrates	2.70	0.04
Sulfates	8.9	0.19
Hydrogénocarbonates (HCO3)	26.8	0.44
Carbonates (CO3)	0.00	<0.01
Phosphore total	<0.10	<0.01
Fluorures	< 0.05	<0.01
TOTAL ANIONS		0.75
	mg/l	meq/l
Anmonium	<0.10	<0.01
Calcium	5.80	0.29
Magnésium	1.70	0.14
Sodium	6.4	0.28
Potassium	1.4	0.04
Manganèse	<0.005	<0.01
Fer	0.074	<0.01
Zinc	<0.030	<0.01
Aluminium	0.095	0.01
Cuivre	<0.002	<0.01
TOTAL CATIONS		0.76

Clermont-Ferrand, le 18 Décembre 2000

Analyse validée par :

Le Responsable de la diffusion ALAME Josette

ALAME Josette

RADIOANALYSE

DIRECTION DEPARTEMENTALE DES AFFAIRES SANITAIRES ET SOCIALES DU PUY-DE-DOME

1, rue d'Assas 63033 CLERMONT-FERRAND CEDEX

Tél. 73 92 42 42

Hygiène du Milieu Affaire suivie par M. RIOU - Poste 1944

GR/MPC

COPIE

REPUBLIQUE FRANÇAISE

Clermont-Fd, le

Le Directeur Départemental des Affaires Sanitaires et Sociales Secrétaire du Conseil Départemental d'Hygiène

à

Monsieur le Président du S.I.A.E.P. du HAUT-LIVRADOIS

Mairie d'ARLANC

63220 ARLANC

OBJET : Commune de MEDEYROLLES -

Captage de la Source du Dansadour.

P. J. : Une.

Monsieur le Président,

J'ai l'honneur de vous transmettre, sous ce pli, compterendu des délibérations du Conseil Départemental d'Hygiène du 19 octobre 1990 concernant le dossier rappelé en objet.

J'attire particulièrement votre attention sur le fait que l'avis de mon service est inclus dans ce document. Je vous invite à prendre note de ces observations.

Veuillez agréer, Monsieur le Président, l'expression de mes sentiments distingués.

P/Le Directeur Secrétaire du Conseil Départemental d'Hygiène L'Ingénieur Sanitaire,

Gabriel RIOU

COPIE POUR INFORMATION ET COORDINATION A :

- The control of the management of the Agriculture of the language RANA 395 With Management of the Control of the
- Monsieur le Maire de MEDEYROLLES 63220 ARLANC
- Bureau d'Etudes Techniques PAILLER

c) Le périmètre de protection éloigné n'est pas défini, mais il est rappelé que le bassin d'alimentation d'une source est une zone sensible aux pollutions, en particulier chimiques.

Celles-ci, en effet, ne sont pas éliminées mais seulement diluées au cours de la circulation souterraine de l'eau.

III - AVIS DES SERVICES

1°) Avis de la Direction Départementale de l'Agriculture et de la Forêt

Compte tenu de la vulnérabilité de cette source et des mauvais résultats des analyses bactériologiques du 3 juin 1988, les propositions de l'hydrogéologue doivent être élargies ; il faut prévoir notamment des interdictions d'épandages d'engrais agricoles ou de matières organiques (purin, lisier et fumier) à l'intérieur du périmètre de protection rapproché.

Sous cette réserve, la Direction Départementale de l'Agriculture et de la Forêt émet un avis favorable dans sa correspondance du 13 septembre 1989.

2°) Avis de la Direction Départementale des Affaires Sanitaires et Sociales

Les analyses réalisées par le Laboratoire de Contrôle des Eaux révèlent une eau bactériologiquement "non potable", le 3 juin 1988. Les conditions de prélèvement étant alors assez sommaires, une nouvelle analyse a été pratiquée, dès que la source a été dégagée. Celle-ci s'est révélée, le 18 mai 1990, conforme aux normes en vigueur.

- 4 -

Au niveau physico-chimique, l'eau s'avère extrêmement peu minéralisée, agressive et de pH acide.

Une neutralisation et une reminéralisation seraient utiles.

Une radioanalyse réalisée par le Service Central de Protection contre les Rayonnements Ionisants révèle l'absence de radioéléments artificiels. La radioactivité naturelle est très faible.

Dans son rapport, l'hydrogéologue précise que les abords de l'émergence sont essentiellement forestiers ; aussi, il s'avère nécessaire de préciser dans l'arrêté de Déclaration d'Utilité Publique :