

L'intelligence environnementale

Diagnostic de pollution des sols

- Projet d'extension des tribunes du stade Gabriel Montpied - Clermont-Ferrand (63100) -

Auteur:

Biobasic Environnement Biopôle Clermont-Limagne 63360 Saint-Beauzire

- www.biobasicenvironnement.com
- info@biobasicenvironnement.com
- Ø 09 72 29 08 71
- **a** 09 72 28 64 25

Demandeur:

Clermont Auvergne Métropole 64-66, avenue de l'Union Soviétique BP 231 63007 Clermont-Ferrand Cedex 1

Date de remise : 12 juillet 2019

Rapport BE/CAM-SGM.SSP.diag/06.19/jt.v0

Document confidentiel Copyright © 2019 - tous droits de reproduction réservés

L'intelligence environnementale

Diagnostic de pollution des sols

Projet d'extension des tribunes du stade Gabriel Montpied - Clermont-Ferrand (63100)

Maître d'ouvrage

Société/Organisme: Clermont Auvergne Métropole

Adresse: 64-66, avenue de l'Union Soviétique

BP 231

63007 Clermont-Ferrand Cedex 1

Interlocuteur(s): M. Romuald LAMBERT

Document

Référence affaire: BEA638-006-SGM-SSP.diag

Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt.v0

Nombre de pages : 48 Nombre d'annexes : 7 Annexes en volume séparé : -

Date de commande : 29/05/2019 Date de réalisation des travaux : 19/06/2019

Date de remise : 12/07/2019

Diffusion: Client

1 exemplaire papier original + 1 exemplaire papier copie 1 exemplaire électronique sur plateforme web sécurisée

Archives: Biobasic Environnement

1 exemplaire électronique

Confidentialité: Normale

Les données répertoriées dans le présent document sont strictement confidentielles. Les éléments techniques et financiers contenus dans ce document sont réservés à l'information exclusive du demandeur.

Copyright © 2019 - tous droits de reproduction réservés

Rédaction : Fabrice POUTIER

Chef de Projet

Validation / Approbation : Julien TROQUET

Superviseur

Diagnostic de pollution des sols

- Projet d'extension des tribunes du stade Gabriel Montpied - Clermont-Ferrand (63100) -

Réf. Document : BE/CAM-SGM.SSP.diag/06.19/jt.v0	Date de remise : 12/07/2019					
Auteur : Demandeur : BIOBASIC Environnement Clermont Auvergne Métropole Biopôle Clermont-Limagne 64-66, avenue de l'Union Soviéti 63360 Saint-Beauzire 63007 Clermont-Ferrand Cedex						
Sommaire						
Documents de référence	1					
Résumé vulgarisé	2					
I. Contexte général de l'étude	3					
I.1. Cadre et périmètre de l'étude	3					
I.2. Sources d'informations	rées dans le cadre de l'étude5					
III.1. Contexte géologique et hydrogéolog	ique local10					
III.2. Contexte hydrologique	17					
	17 20					
	ain 22					
IV.1. Reconnaissance des sols	22					
IV.2. Définition du programme analytique	27					
V. Résultats obtenus pour l'analyse des s	ols29					
V.1. Valeurs de référence						
V.3. Discussion et interprétation des résu						
VI. Conclusions	45					
	46					
Liste des Tableaux	47					
Liste des Annexes	48					
Responsable de l'étude :	Dossier suivi par :					
> Julien Troquet	> Fabrice Poutier					
Ø 09 72 29 08 71						

Les données répertoriées dans le présent document sont strictement confidentielles ; les éléments techniques et financiers contenus dans ce document sont réservés à l'information exclusive du client. Le présent document et ses annexes constituent un tout indissociable.

Documents de référence

Désignation	Références

Diagnostic de pollution des sols Projet d'extension des tribunes du stade Gabriel Montpied - Clermont-Fd (63100) BE/CAM-SGM.SSP.diag/06.19/jt.v0, 12/07/2019 - confidentiel Copyright © 2019, Biobasic Environnement® - Tous droits de reproduction réservés

Résumé vulgarisé

Contexte	La présente étude consistait en la réalisation d'un diagnostic de pollution des sols dans le cadre du projet d'extension des tribunes du stade Gabriel Montpied, qui se situe sur la commune de Clermont-Ferrand (63100) au niveau du quartier de Champratel. L'objectif de cette étude visait à définir l'état des sols présents au droit des zones de travaux, qui sont susceptibles, dans le cadre du projet, d'être extraits et éliminés hors site.
Nature des investigations réalisées	Vingt (20) sondages ont été réalisés sur l'ensemble du site d'intérêt, dont dix (10) sur le pourtour immédiat du stade au droit de l'emplacement des futures tribunes côté Nord, côté Est et côté Sud et dix (10) sur les autres secteurs sur lesquels il est prévu l'aménagement de parvis et de parking. En l'absence de zones sources potentielles de pollution, les sondages ont été implantés de façon aléatoire.
	 Dix (10) échantillons, dont neuf (9) échantillons composites et un (1) échantillon unitaire, ont fait l'objet d'une caractérisation complète en laboratoire vis-à-vis des critères définissant les matériaux inertes selon les spécifications de l'arrêté du 12 décembre 2014.
	 Dix (10) échantillons unitaires représentatifs des sols de surface prélevés sur dix (10) des vingt (20) sondages réalisés ont fait l'objet d'une analyse des hydrocarbures totaux et de douze éléments métalliques sur le matériau brut.
Etat du	Les investigations réalisées montrent :
milieu sol	 l'absence de tout impact des substances organiques recherchées (hydrocarbures aliphatiques et aromatiques, polychlorobiphényles) sur l'ensemble des sols analysés;
	 l'absence de toute anomalie pour les éléments métalliques sur le matériau brut, ainsi que sur la fraction solubilisée pour l'ensemble des sols analysés;
	que la majorité des sols investigués est assimilable à des matériaux inertes, à l'exception des sols constitutifs du premier horizon recoupé au droit de l'emplacement des futures tribunes Est et Sud (sondages ST4, ST5, ST6, ST7, ST8, ST9 et ST10), qui doivent être assimilés à des matériaux « inertes + » compte tenu de leurs teneurs en fluorures sur la fraction solubilisée.
Conclusions / Recommandations	Les sols constitutifs du premier horizon recoupé au droit de l'emplacement des futures tribunes Est et Sud ne pouvant pas être assimilés à des matériaux inertes, il est recommandé dans le cadre des futurs travaux à réaliser sur ces secteurs de prévoir le maintien de ces sols sur le site, puisque, s'ils devaient être éliminés hors site, ils ne pourraient pas être évacués vers une installation de stockage de déchets inertes classiques (ISDI), mais devraient être orientés vers une installation de stockage spécifiquement autorisée à recevoir ce type de matériaux (ISDI +) entrainant un surcoût significatif.
Limites / Incertitudes	Les sondages réalisés sont ponctuels ; ils ne rendent pas compte de manière exhaustive de l'état global du sous-sol au droit de la totalité de la surface du site.

I. Contexte général de l'étude

Il est rendu compte dans le présent rapport des résultats du diagnostic de pollution des sols, réalisé dans le cadre du projet d'extension des tribunes du stade Gabriel Montpied localisé rue Robert Lemoy à Clermont-Ferrand (63100). Cette étude a été réalisée par la société Biobasic Environnement à la demande et pour le compte de Clermont Auvergne Métropole.

I.1. Cadre et périmètre de l'étude

La présente étude, réalisée dans le cadre du projet d'extension des tribunes du stade Gabriel Montpied, consiste en la réalisation d'un diagnostic de pollution des sols au droit de l'emprise foncière devant faire l'objet de travaux.

L'objectif de cette étude consiste à définir l'état des sols présents au droit de cette zone, qui sont susceptibles, dans le cadre du projet, d'être extraits et éliminés hors site ; elle doit donc permettre de définir la qualité des sols de surface présents sur l'ensemble de la zone concernée par les travaux.

Le site d'intérêt se situe sur la commune de Clermont-Ferrand (63100) au niveau du quartier de Champratel; il est accessible par le Nord via la rue Robert Lemoy. Il correspond à une partie de la parcelle AS 156, l'emprise foncière d'intérêt présentant une superficie de l'ordre de 130 000 m².

- La situation générale du site d'intérêt est présenté en Annexe I.
- Le plan de masse du site d'intérêt est présenté en Annexe II.

La présente étude a été conduite selon la méthodologie d'étude définie par le Ministère chargé de l'Environnement, mise en application le 8 février 2007, puis mise à jour en date du 19 avril 2017, ainsi que selon les spécifications de la norme NF X31-620, parties 1 et 2, de décembre 2018. Les prestations réalisées dans le cadre de cette étude relèvent du domaine A, « Etudes, Assistance et Contrôle » et correspondent à la codification suivante :

INFOS -	Réalisation des études historiques, documentaires et de vulnérabilité afin d'élaborer un schéma conceptuel et, le cas échéant, un programme prévisionnel d'investigations ;
DIAG -	Mise en œuvre d'un programme d'investigations et interprétation des résultats ;
A100 -	Visite du site ;
A110 -	Études historique, documentaire et mémorielle ;
A120 -	Étude de vulnérabilité des milieux ;
A130 -	Elaboration d'un programme prévisionnel d'investigations ;
A200 -	Prélèvements, mesures, observations et/ou analyses sur les sols ;
A270 -	Interprétation des résultats des investigations.

Le présent rapport expose le résultat de l'étude documentaire et des investigations de terrain conduites le 19 juin 2019. Sont détaillés en particulier dans ce document les observations visuelles et les résultats des analyses effectuées au moment du prélèvement, les coupes géologiques des sondages et les résultats des différentes analyses réalisées en laboratoire.

Diagnostic de pollution des sols Projet d'extension des tribunes du stade Gabriel Montpied - Clermont-Fd (63100) BE/CAM-SGM.SSP.diag/06.19/jt.v0, 12/07/2019 - confidentiel Copyright © 2019, Biobasic Environnement® - Tous droits de reproduction réservés

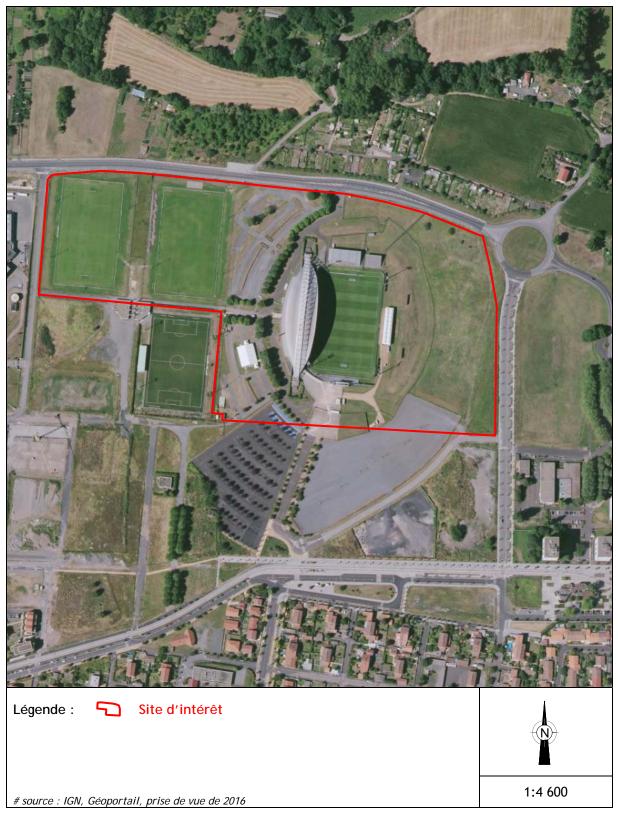


Figure 1 : Vue aérienne du site d'intérêt et de son voisinage (# source : IGN, Géoportail)

I.2. Sources d'informations

Différentes sources d'informations ont été utilisées dans le cadre de cette étude, en particulier pour la réalisation de la première phase historique, documentaire et mémorielle (chapitres II et III) :

Banque de Données du Sous-Sol du BRGM

http://infoterre.brgm.fr

Géoportail, portail national de la connaissance du territoire mis en œuvre par l'IGN https://www.geoportail.gouv.fr/

Géorisques, site thématique dédié à la prévention des risques majeurs

http://www.georisques.gouv.fr/

Inventaire des anciens sites industriels et activités de service, BASIAS

http://www.georisques.gouv.fr/dossiers/inventaire-historique-des-sites-industriels-et-activites-de-service-basias#/

Préfecture du Puy-de-Dôme

18, boulevard Desaix - 63033 Clermont-Ferrand cedex 1, © 04 73 98 63 63

http://www.puy-de-dome.gouv.fr

Agence régionale de Santé (ARS) Auvergne-Rhône-Alpes Service Santé Environnement 241, rue Garibaldi - 69003 Lyon, Ø 04 72 34 74 00 https://www.auvergne-rhone-alpes.ars.sante.fr/

1.3. Personnes contactées et/ou rencontrées dans le cadre de l'étude

M. Romuald LAMBERT

Responsable Stade Gabriel Montpied - Les Gravanches

Clermont Auvergne Métropole Direction des Sports 64-66, avenue de l'Union Soviétique BP 231 63007 Clermont-Ferrand Cedex 1

Ø 04 73 98 36 80

rlambert@clermontmetropole.eu

Mme Sandrine TRILLAT Directrice de projet

La SODEREC Agence de Clermont-Ferrand 18, avenue de l'Agriculture 63100 Clermont-Ferrand

Ø 04 73 74 62 15

strillat@lasoderec.com

II. Description du site d'intérêt

II.1. Situation générale

Le site d'intérêt se situe au Nord de la commune de Clermont-Ferrand au niveau du quartier de Champratel. Il correspond à une partie de la parcelle cadastrale AS 156, dont la contenance globale est de 173 930 m^2 (données cadastrales) ; l'emprise concernée par la présente étude correspond à la partie Nord de cette parcelle et présente une superficie de l'ordre de 130 000 m^2 .

Il est précisé que le site d'intérêt se trouve en zone UV (zone urbaine verte) du plan local d'urbanisme de la ville de Clermont-Ferrand. La zone UV regroupe des espaces urbains fortement végétalisés à vocation récréative et sportive. Ces espaces sont identifiés pour leur qualité paysagère et écologique. La zone UV comprend donc les principaux espaces verts publics, les secteurs de jardins vivriers, les grands espaces verts relais de la biodiversité dans l'espace urbain et les équipements et installations sportives disposant d'espaces extérieurs comme le stade Gabriel Montpied. Sur cette zone, toute occupation et utilisation du sol est interdite, à l'exception des constructions et installations nécessaires à l'exploitation et au fonctionnement des parcs, des installations sportives et des jardins vivriers, ainsi que des équipements d'intérêt collectif et destinés aux services publics.

La situation générale du site d'intérêt est présentée en Annexe I.

II.2. Etat actuel du site d'intérêt

Le site d'intérêt comprend un certain nombre d'équipements sportifs, dont le stade de football à proprement dit (terrain d'honneur), ainsi que trois terrains d'entraînement du côté Ouest.

Le stade est bordé du côté Ouest par une grande tribune couverte, les trois autres côtés du stade étant actuellement occupés par de petites tribunes modulaires. Un vaste parking se trouve côté Sud à l'extérieur de l'enceinte du stade. Des zones de parkings se trouvent également à l'intérieur de l'enceinte du stade du côté Ouest de la tribune Ouest. Une vaste zone verte se situe à l'Est du terrain d'honneur entre ce dernier et la rue Victorien Sardou. L'entrée dans le complexe se fait par le Nord au niveau de la rue Robert Lemoy.

- La situation générale du site d'intérêt est présentée en Annexe I.
- Le plan de masse du site d'intérêt est présenté en Annexe II.

II.3. Historique

L'historique du site et de son voisinage a été principalement reconstitué sur la base des photographies aériennes de l'IGN disponibles sur la période de 1945 à nos jours (Voir Figures 2 et 3 pages suivantes).

L'analyse des vues aériennes montre qu'avant 1990, le secteur d'intérêt était à vocation agricole. Le terrain de football de l'actuel stade apparaît en 1991 ; deux autres terrains sont également visibles à cette date plus à l'Ouest.

Le cliché de 1994 montre la tribune Ouest en cours de construction. Le stade Gabriel Montpied est inauguré le 30 décembre 1995 ; il doit son nom à Gabriel Montpied (1903-1991), ancien résistant et maire de Clermont-Ferrand entre 1944 et 1973.

Figure 2 : Vues aériennes historiques retraçant l'évolution du site d'intérêt de 1946 à 1996 (# source : IGN)

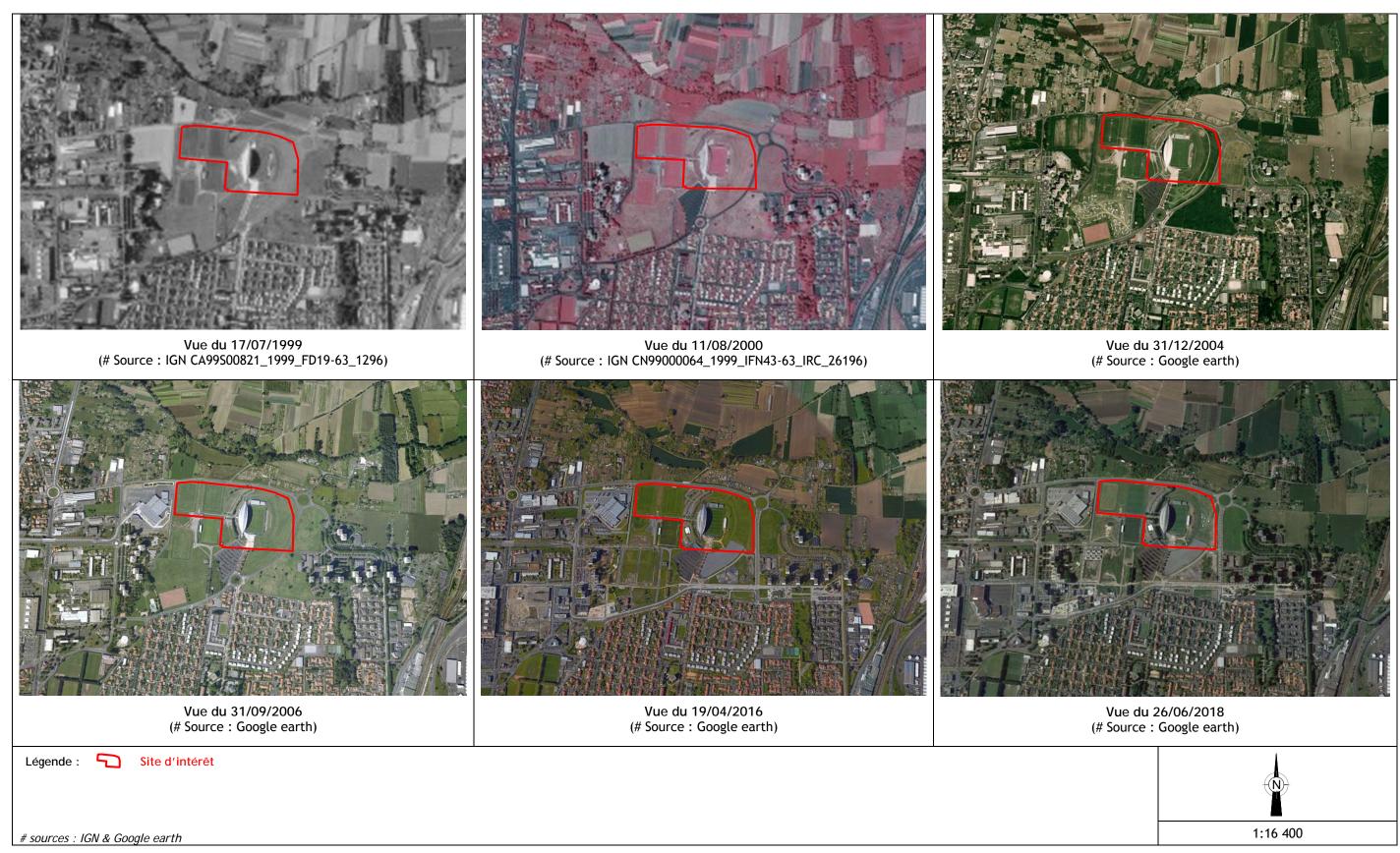


Figure 3 : Vues aériennes historiques retraçant l'évolution du site d'intérêt de 1999 à 2018 (# sources : IGN & Google earth)

De 1996 à fin 2004, aucune évolution notable n'est à noter au niveau du secteur d'intérêt.

Le cliché de 2006 montre l'apparition du centre de maintenance du tramway du côté Ouest du complexe sportif.

Le cliché de 2016 montre une évolution des voies publiques liée à la prolongation de la ligne de tramway. Le tracé de la rue Adrien Mabrut qui contournait le stade par l'Est jusqu'au rond-point permettant de gagner le rue Robert Lemoy a ainsi été modifié entre 2013 et 2016; le tracé de cette rue est maintenant rectiligne d'Ouest et en Est et permet de desservir le quartier des Vergnes. Une nouvelle rue, dénommée Victorien Sardou, a été créée dans l'axe Sud-Nord pour relier la rue Adrien Mabrut au rond-point qui permet de desservir la rue Robert Lemoy et la route de La Plaine permettant de gagner Gerzat.

Cette étude historique sommaire montre que le secteur d'intérêt n'a jamais supporté d'activités industrielles et que son aménagement est relativement récent puisqu'il date du début des années 1990.

III. Environnement du site d'intérêt

III.1. Contexte géologique et hydrogéologique local

Les données géologiques et hydrogéologiques ont été obtenues à partir de la carte géologique de Clermont-Ferrand (BRGM, n°693, 1973) et auprès du BRGM de Clermont-Ferrand.

III.1.1. Géologie régionale

La région de Clermont Ferrand s'inscrit à la limite de deux régions géologiques naturelles bien distinctes : la bordure occidentale de l'Auvergne, au relief accusé (chaîne des Puys) et la Limagne d'Allier, vaste plaine d'effondrement au relief contrasté.

Le plateau auvergnat, granitique et métamorphique, d'altitude moyenne 800 m, est couvert de prairies et forêts ; il est limité à l'Est par un abrupt orienté Nord-Sud, conséquence de l'affaissement ayant créé le Bassin de Limagne (Voir Figure 4 ci-dessous). Sur le plateau et parallèlement à cet abrupt, de nombreux édifices volcaniques (chaîne des Puys) constituent un alignement montagneux dont les puys culminent généralement vers 1 200 mètres d'altitude ; le Puy-de-Dôme domine l'ensemble avec 1 464 mètres d'altitude. Des épandages de lave s'étalent de part et d'autre de la chaîne, vers la vallée de la Sioule à l'Ouest et vers la Limagne à l'Est.

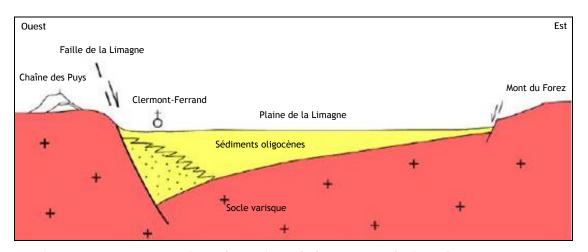


Figure 4 : Représentation schématique de la coupe géologique Ouest-Est de la plaine de la Limagne au niveau de Clermont-Ferrand (# source : BRGM Edition, Rift de la Limagne)

La commune de Clermont-Ferrand est implantée sur la bordure occidentale de la plaine de la Limagne, qui s'étend de Brioude au Sud à Moulins au Nord. Ce bassin constitué essentiellement de dépôts continentaux lacustres, carbonatés à l'Oligocène, volcaniques et fluviatiles au Mio-Pliocène et Quaternaire, présente une morphologie complexe dans laquelle il est possible de distinguer grossièrement des hauts plateaux de 500 à 700 mètres d'altitude à couverture basaltique (Gergovie, Côtes de Clermont, Châteauguay), des collines sableuses ou calcaires parfois accidentées avec apparition de puys volcaniques, des vallées orientées Est-Ouest souvent tapissées de coulées basaltiques, de larges dépressions marécageuses très fertiles (« Terres Noires ») et enfin la vallée de l'Allier.

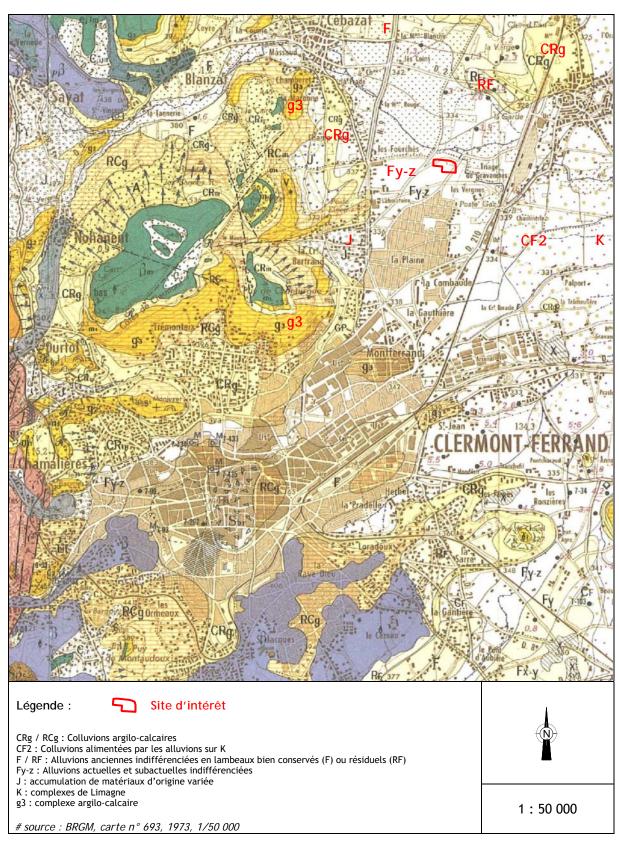


Figure 5 : Extrait de la carte géologique de Clermont-Ferrand (# source : BRGM, carte n° 693, 1973, 1/50 000)

Diagnostic de pollution des sols Projet d'extension des tribunes du stade Gabriel Montpied - Clermont-Fd (63100) BE/CAM-SGM.SSP.diag/06.19/jt.v0, 12/07/2019 - confidentiel Copyright © 2019, Biobasic Environnement® - Tous droits de reproduction réservés

III.1.2. Géologie locale

La commune de Clermont-Ferrand est implantée sur des formations de nature carbonatée datant de l'Oligocène (g_2 et g_3), rarement affleurantes car recouvertes soit de colluvions dérivées de l'Oligocène (CRg et RCg), soit d'alluvions anciennes et récentes (F et Fy-z), ou encore de coulées basaltiques quaternaires (β).

Formations carbonatées de l'Oligocène et colluvions dérivées

Les formations carbonatées de l'Oligocène moyen et supérieur, respectivement notées g_2 et g_3 sur la carte géologique (Voir Figure 5 ci-avant), sont très peu affleurantes sur ce secteur géographique. Il s'agit de terrains argilo-calcaires et marno-calcaires pouvant laisser place par endroit à des niveaux détritiques sableux à gréseux.

Formations colluvionnaires dérivées de l'Oligocène

Les formations carbonatées évoquées ci-avant sont largement recouvertes par des formations colluvionnaires notées RCg et CRg sur la carte géologique (Voir Figure 5 ci-avant). Ces deux formations masquent effectivement la plupart des versants marneux ou calcaires. Leur composition est relativement homogène ; toutefois, la taille des fragments calcaires diminue de haut en bas des versants. Ce fait s'explique le plus souvent par la répartition des affleurements calcaires, fréquents dans les parties élevées des reliefs. Selon l'épaisseur des colluvions et leur degré d'évolution, deux domaines se distinguent : les formations RCg (épaisseur généralement inférieure au mètre) et les formations CRg (épaisseur supérieure au mètre). La délimitation des deux domaines est irrégulière. La mise en place des colluvions argilo-calcaires relève de plusieurs processus dont la solifluxion qui a joué un rôle important dans le façonnement des versants et le transport des matériaux.

Formations alluvionnaires anciennes et récentes

Les alluvions présentes au droit du secteur étudié s'étendent assez largement entre Cébazat et Gerzat et proviennent à la fois du Bédat et de la Tiretaine; elles sont majoritairement constituées de cailloutis et de sables d'origine volcanique. Elles sont notées Fy-z sur la carte géologique (Voir Figure 5 ci-avant).

Formations volcaniques quaternaires

La butte de Clermont-Ferrand se compose de brèches (projections de maar) notées Sbr sur la carte géologique (Voir Figure 5 ci-avant). Les maars sont caractérisés par un cratère de grande dimension (jusqu'à deux kilomètres de diamètre), profondément enraciné dans le socle et flanqué d'un croissant de projections stratifiées où s'alternent régulièrement des niveaux riches en éléments du substratum et des niveaux riches en éléments laviques (verre basaltique essentiellement). Seul le maar de Clermont-Ferrand apparaît dans la région. Sa cartographie indique une zone à l'intérieur de laquelle le substratum n'est pas atteint par des sondages de 40 mètres. Il est comblé par une sédimentation détritique lacustre. Les projections sont représentées par une brèche stratifiée (« conglomérats de la butte de Clermont »).

Il est à noter que par endroit, au Sud et à l'Ouest du centre-ville de Clermont-Ferrand, les terrains carbonatés de l'Oligocène évoqué ci-avant ont été recouverts par des coulées basaltiques qui depuis la position sommitale des centres d'émission, se sont épanchées vers l'Est en direction de la Limagne en empruntant d'anciens talwegs.

Le site d'intérêt repose sur des alluvions anciennes et actuelles indifférenciées, notées Fy-z sur la carte géologique. Plusieurs sondages référencés dans la banque de données du sous-sol InfoTerre et réalisés dans un rayon de 150 mètres environ autour du site d'intérêt ont été consultés au BRGM. Les profils géologiques de ces sondages se caractérisent généralement par un premier niveau d'alluvions d'origines granitique et volcanique constituées selon les endroits de sables argileux et/ou d'argiles à blocs dans lesquels s'intercalent, sur une épaisseur pouvant atteindre jusqu'à 4 mètres, un niveau de dépôts d'origine volcanique de type sables et cendres volcaniques. Ces terrains quaternaires reposent sur le substratum marneux ou argilo-marneux apparaissant généralement vers 5 à 8 mètres de profondeur dans ce secteur géographique.

III.1.3. Hydrogéologie

Les caractéristiques hydrogéologiques et les ressources en eaux souterraines varient suivant les secteurs géographiques avec la nature des formations géologiques. Trois secteurs peuvent ainsi être distingués du fait de la présence de trois natures de sol différentes.

- Secteurs de nature cristalline, métamorphique ou éruptive, imperméables dans leur ensemble Ces secteurs sont situés principalement sur une bande Sud-Nord entre la Chaîne des Puys et la Plaine de la Limagne. Des infiltrations, provenant des précipitations ou du ruissellement, se produisent dans les zones altérées ou fissurées ou dans les éboulis superficiels ; il en résulte des sources, généralement de faibles débits. En dehors de ces cas, qui ne présentent qu'un faible intérêt local, ces secteurs peuvent être considérés comme dépourvus de ressources en eaux souterraines.
- Secteurs de nature volcanique, très perméables

Ces secteurs correspondent à la Chaîne des Puys et aux coulées, de longueur et de largeur variées, qui en partent vers l'Est et vers l'Ouest. Il faut distinguer une perméabilité de fissures dans les coulées, généralement basaltiques, et une perméabilité d'interstices dans les projections, qui constituent la plupart des puys ou s'interstratifient entre coulées successives. L'altitude et l'exposition de la Chaîne des Puys favorisent les précipitations; une part importante de ces dernières s'infiltre dans les formations volcaniques. L'eau infiltrée tend à rejoindre le fond des talwegs fossiles, creusés dans les roches cristallines imperméables avant la surimposition du relief volcanique; les exutoires naturels sont constitués par des sources au front des coulées.

- Secteurs de nature sédimentaire, de perméabilité variable
 - Ces secteurs correspondent à la plaine de la Limagne. Ils se composent de formations oligocènes et quaternaires (alluvionnaires).
 - Les formations oligocènes sont en majeure partie marneuses et imperméables. Elles comprennent cependant en profondeur, et localement en surface, des niveaux calcaires, gréseux ou arkosiques plus ou moins perméables et pouvant contenir des nappes libres ou captives.
 - Il existe par endroit, au-dessus des formations oligocènes, quelques mètres de formations quaternaires qui sont, soit des sables et graviers perméables, soit un complexe argilo-sableux peu perméable correspondant à des dépôts d'anciens chenaux ou marais. Les infiltrations provenant des précipitations et des ruisseaux y alimentent de petites nappes phréatiques dont la puissance est de l'ordre du mètre ; les débits obtenus peuvent être appréciables dans les sables et graviers.

Le site d'intérêt se trouve au droit d'un secteur de nature alluvionnaire sur des formations quaternaires d'environ 5 à 8 mètres d'épaisseur. Ces formations correspondent à une succession de niveaux relativement perméables (cendres, sables, graviers et galets plus ou moins argileux, d'origines à la fois granitique et à la fois volcanique) dans lesquels s'intercalent quelques écoulements d'eau relativement proches de la surface (environ 2,5 à 3 mètres). Au niveau de ce secteur géographique, les eaux souterraines s'écoulent en direction de l'Est, c'est-à-dire parallèlement au ruisseau le Bédat qui s'écoule d'Ouest en Est au Nord du site d'intérêt.

III.1.4. Ressources en eau et captages AEP

Captages AEP

Une recherche des captages d'alimentation en eau potable (AEP) a été effectuée dans un rayon de plus de 10 km autour du site d'étude. Deux (2) secteurs d'alimentation en eau potable de l'agglomération clermontoise sont à noter.

A l'Est de l'agglomération clermontoise, de nombreux captages d'alimentation en eau potable constituent le champ captant du Val d'Allier. Les communes concernées les plus

proches sont celles de Dallet et Pont-du-Château. Ces captages se trouvent à l'Est du site d'intérêt de part et d'autre de la rivière Allier; le plus proche d'entre eux, situé sur la commune de Dallet, en rive droite de l'Allier, se trouve à 10 km de distance du site d'intérêt.

Le deuxième secteur d'alimentation en eau potable, situé à l'Ouest de l'agglomération clermontoise, correspond aux captages de la chaîne des Puys situés sur les communes de Chanat-la-Mouteyre, Argnat, Egaules, Orcines, Durtol et Blanzat. Le plus proche de ces captages se trouve sur la commune de Blanzat à environ 4,7 km de distance du site d'intérêt, en amont hydraulique.

Ces captages sont donc situés en amont hydraulique de la zone étudiée à au moins 4,7 km à l'Ouest du site d'intérêt pour les captages de la chaîne des Puys et à au moins 10 km à l'Est pour les champs captant du Val d'Allier. Ils ne sont donc absolument pas vulnérables à une éventuelle pollution issue du site d'intérêt.

Points d'eau déclarés

Par ailleurs, de nombreux puits ou sources à usage non AEP, privé ou industriel, sont présents à proximité du site d'intérêt (Voir Figure 6 ci-après). Parmi eux, il existe notamment :

- plusieurs points d'eau déclarés situés au Nord et au Nord-Est du site d'intérêt (points gris sur la Figure 6 ci-après) correspondant à des sondages réalisés dans le cadre d'une mission de reconnaissance géologique de la plaine alluviale à l'Ouest de Gerzat conduite en 1963 par la société Béarnaise pour le compte des services du Génie Rural du Puy-de-Dôme dans le but de déterminer la nature et l'épaisseur des couches constituant le sous-sol, en vue d'une étude ultérieure de la nappe d'eau souterraine. Ces sondages descendus entre 4,9 et 8,6 mètres de profondeur, ont permis de mettre en évidence la présence d'eau souterraine entre 1,2 et 3,1 mètres de profondeur sous la surface du sol.
- trois piézomètres implantés en 1996 pour le compte de la Direction Départementale, de l'Agriculture et de la Forêt, au Nord et à l'Est du site d'intérêt (points violets sur la Figure 6 ci-après). Ces ouvrages descendus entre 7 et 12 mètres de profondeur, ont mis en évidence des niveaux statiques compris entre 0,8 et 2,7 mètres de profondeur.
- plusieurs sondages, dont un situé au droit du site d'intérêt (réalisé en 1990), un au Sud-Ouest et plusieurs au Sud-Est, au niveau des zones urbanisées, réalisés dans le cadre de diverses missions géotechniques conduites préalablement à la construction de bâtiments notamment (points verts sur la Figure 6 ci-après).
- sept sondages situés immédiatement au Sud du site d'intérêt, réalisés lors d'une mission conduite en 1960 par l'entreprise Rhodanienne de Terrassements et Puits pour le compte de la Manufacture Française des Pneumatiques Michelin (points bleus sur la Figure 6 ci-après); six sondages descendus entre 10 et 12,5 mètres de profondeur encerclent un septième sondage descendu à 14,2 mètres de profondeur équipé d'une station de pompage.
- des puits et sondages réalisés en 1954 pour le compte de la Manufacture Française des Pneumatiques Michelin (points oranges sur la Figure 6 ci-après) qui a procédé à une importante campagne de reconnaissance des sols sur ce secteur géographique s'étendant du quartier de la Plaine à Cataroux. Ces puits, dont les plus proches se trouvent immédiatement à l'Est du site d'intérêt, ont été descendus entre 4 et 19 mètres de profondeur. Il semblerait d'après un extrait de plan consultable sur Infoterre que cette campagne de reconnaissance ait notamment permis de déterminer les axes d'anciennes vallées, parallèles aux actuels cours d'eau de la Tiretaine (bras Nord) et du Bédat.
- un sondage réalisé en 1981 ayant un objectif géothermique (point jaune sur la Figure 6 ci-après); ce sondage a été descendu à 1886,5 mètres de profondeur et implanté immédiatement à l'Est du site d'intérêt, de l'autre côté de l'actuel rond-point.

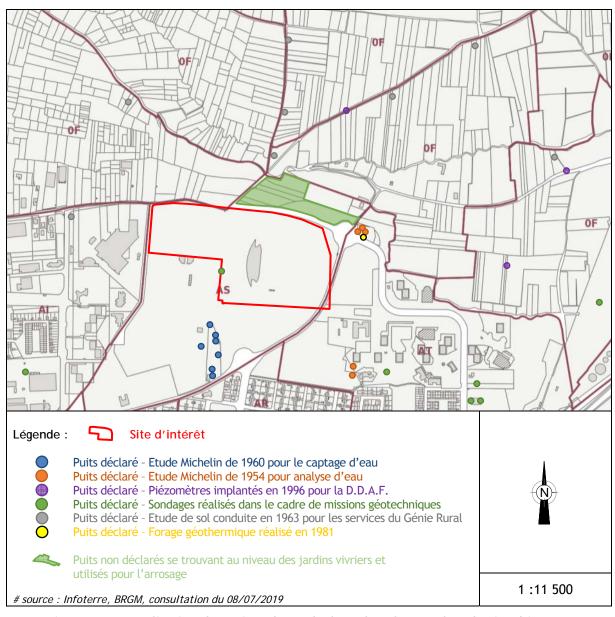


Figure 6 : Localisation des points d'eau déclarés les plus proches du site d'intérêt (# source : Infoterre, BRGM, juillet 2019)

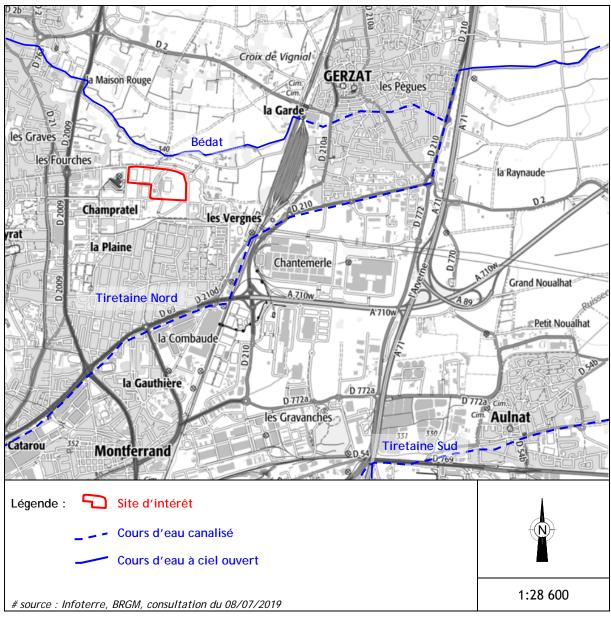


Figure 7 : Représentation cartographique du réseau hydrographique autour du site d'intérêt (# source : Infoterre, BRGM, juillet 2019)

Les points d'eau déclarés situés en aval hydraulique du site d'intérêt, potentiellement vulnérables à une éventuelle pollution issue du site d'intérêt, ne présentent pas d'usage sensible puisqu'il s'agit de puits ou piézomètres à priori inexploités. En revanche, il est précisé qu'il existe de nombreux puits non déclarés au niveau des nombreux jardins vivriers présents sur le secteur étudié immédiatement au Nord et à l'Est du site d'intérêt; ces puits présentent un usage sensible puisqu'ils sont utilisés pour l'arrosage des jardins.

III.2. Contexte hydrologique

L'Allier, principal cours d'eau du Puy-de-Dôme, s'écoule à 10 km à l'Est du site d'intérêt selon une série de méandres de tailles variables et selon un axe global Sud-Nord.

La ville de Clermont-Ferrand et les communes voisines, situées à l'Est de reliefs conséquents (plateau granitique et Chaîne des Puys) et en contrebas de la faille de la Limagne, drainent naturellement de nombreux cours d'eau qui suivent une topographie les orientant globalement de l'Ouest vers l'Est en direction de l'Allier.

Au niveau du secteur étudié, situé au Nord de Clermont-Ferrand entre Cébazat et Gerzat (Voir Figure 7 ci-avant), le Bédat s'écoule d'Ouest en Est à ciel ouvert immédiatement au Nord du site d'intérêt. Ce cours d'eau prend sa source près du lieu-dit La Mouteyre, au niveau de la Chaîne des Puys. Il s'écoule globalement du Sud-Ouest vers le Nord-Est, traverse les villes de Cébazat, Gerzat, puis Chappes et Entraigues et se jette en rive droite de la Morge. Il reçoit les eaux de nombreux fossés latéraux et adjacents et de plusieurs autres ruisseaux. Le débit du Bédat peut donc être relativement important.

Le Bédat, canalisé dans sa traversée du centre-ville de Gerzat, s'écoule immédiatement au Nord du site, d'Ouest en Est à ciel ouvert.

III.3. Risques naturels et industriels

Au niveau de la partie Nord de la commune de Clermont-Ferrand, plusieurs zones sont concernées par les risques naturels liés aux inondations.

Il existe donc sur l'agglomération clermontoise un Plan de Prévention des Risques Naturels Prévisibles d'inondation (PPRNPi). Il est rappelé que la notion de risque correspond à une mesure de la situation dangereuse qui résulte de la confrontation d'un aléa (phénomène naturel dangereux) et d'un enjeu (humain, environnemental, voire économique).

Les Plans de Prévention des Risques Naturels Prévisibles d'inondation (PPRNPi) prescrits en application de la loi du 2 février 1995 dite « Loi Barnier » *(articles L 562-1 à L 562-9 du code de l'environnement)* par arrêtés préfectoraux des 7 décembre 1998 et 27 décembre 1999, visent à :

- définir les périmètres concernés par les risques de crues,
- réglementer l'usage des sols et les modalités de construction.

Les objectifs des PPRNPi sont triples :

- assurer la mise en sécurité des personnes,
- prendre en compte le fait urbain et « laisser vivre la ville »,
- intégrer le risque d'inondation comme une contrainte d'aménagement.

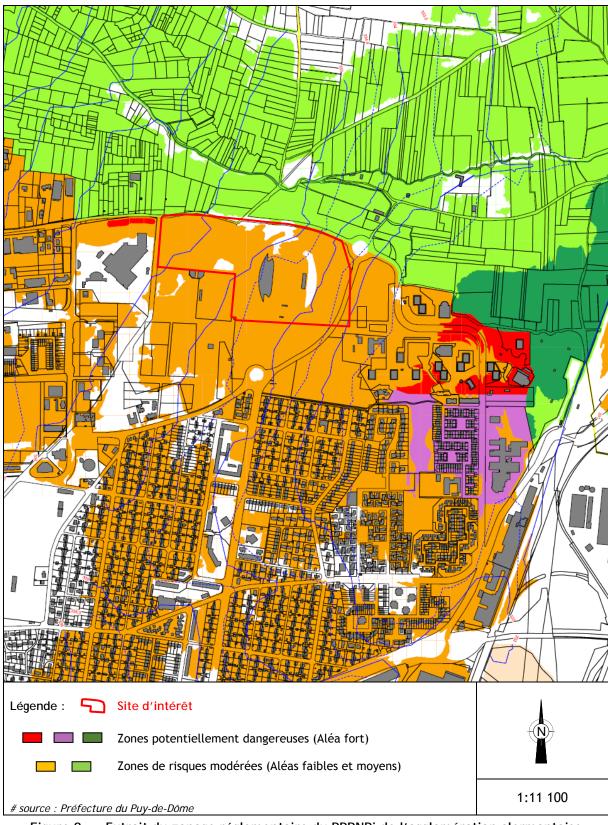


Figure 8 : Extrait du zonage réglementaire du PPRNPi de l'agglomération clermontoise (# source : Préfecture du Puy-de-Dôme)

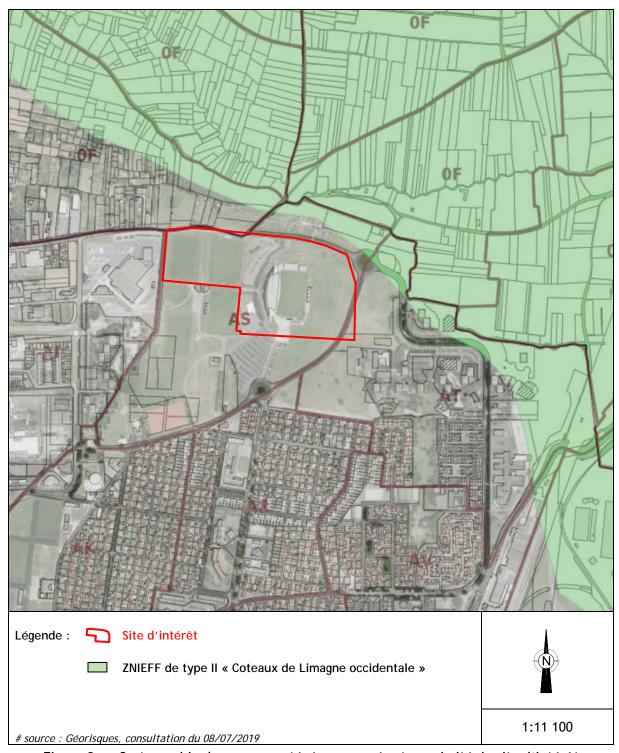


Figure 9 : Cartographie des zones protégées recensées à proximité du site d'intérêt (# source : Géorisques, juillet 2019)

Le plan de prévention des risques naturels prévisibles d'inondation de l'agglomération clermontoise a été approuvé par arrêté préfectoral n°16/01593 du 8 juillet 2016 et publié le 22 juillet 2016 au recueil des actes administratifs spécial de la préfecture du Puy-de-Dôme n°63-2016-005. Il concerne 18 communes de l'agglomération clermontoise.

Le site d'intérêt, qui se trouve à une centaine de mètres au Sud du Bédat, est localisé d'après le zonage du PPRNPi dans une zone de risques modérés (aléa faible à moyen).

La commune de Clermont-Ferrand est également concernée par les risques liés aux feux de forêt, les risques liés aux mouvements de terrain, les risques liés au transport de marchandises dangereuses. Enfin, la ville est classée en zone de sismicité 3 « sismicité modérée ».

III.4. Zones naturelles sensibles

Il est rappelé que le site d'intérêt se trouve, au plus proche, à 3,7 km du Parc Naturel Régional des Volcans d'Auvergne. Par ailleurs, les zones naturelles sensibles les plus proches du site d'intérêt, classées selon deux catégories distinctes, sont présentées ci-après.

- Zone Naturelle d'Intérêt Ecologique, Floristique et Faunistique (ZNIEFF)
 - A proximité du site d'intérêt, certains milieux naturels remarquables sont inscrits à l'inventaire des ZNIEFF. Une Zone Naturelle d'Intérêt Ecologique, Floristique et Faunistique (ZNIEFF) est un territoire sur lequel les scientifiques ont identifié des éléments rares, remarquables, protégés ou menacés du patrimoine naturel. Il existe deux types de ZNIEFF:
- Les zones de type I : secteurs de superficie en général limitée, caractérisés par leur intérêt biologique remarquable.
- Les zones de type II : grands ensembles naturels riches et peu modifiés, ou qui offrent des potentialités biologiques importantes.

Au plus proche du site d'intérêt, deux (2) ZNIEFF de type I et une (1) ZNIEFF de type II ont été recensées :

- La ZNIEFF de type I « Puy de Var le Caire » (n° régional 00180023 ; identifiant n° 830015163) présente une surface de 440 ha. Elle se trouve à 1,8 km à l'Ouest du site d'intérêt et concerne les communes de Clermont-Ferrand, Blanzat et Cébazat.
- ▶ La ZNIEFF de type I du « Marais de FosseveIIe » (n° régional 00006112 ; identifiant n° 830020135) couvre une surface de 32 ha. Elle se trouve à 3 km au Nord-Est du site d'intérêt.
- La ZNIEFF de type II « Coteaux de Limagne occidentale » (n° régional 00180000 ; identifiant n° 830007460) occupe un vaste territoire de 40 036 ha. L'emprise de cette zone se situe immédiatement au Nord et à l'Est du site d'intérêt (Voir Figure 9 ci-avant).

Réseau Natura 2000 (ZPS et ZSC)

Le réseau Natura 2000 est un réseau écologique européen cohérent de sites, dits sites Natura 2000, mis en place en application des Directives « Oiseaux » et « Habitats ». L'objectif principal du réseau Natura 2000 est de favoriser le maintien de la biodiversité, tout en tenant compte des exigences économiques, sociales, culturelles et régionales, dans une logique de développement durable.

La zone NATURA 2000 recensée au plus proche du site d'intérêt est une zone spéciale de conservation (ZSC) instaurée par la Directive Habitats. Il s'agit de la zone des « Vallées et coteaux thermophiles au Nord de Clermont-Ferrand » (Identifiant FR8301036) située à 2 km à l'Ouest du site d'intérêt. Cette zone, éclatée en neuf îlots, présente une surface totale de 231 ha et une altitude moyenne de 442 m. Cette zone a fait l'objet d'un document d'objectifs approuvé le 13/02/2003.

Sites inscrits

Il est à noter qu'en plus des zones naturelles sensibles recensées ci-dessus, il existe un site inscrit remarquable pour sa richesse architecturale et historique, à moins de 2,5 km de distance du site d'intérêt. Il s'agit « l'ensemble urbain de Montferrand » (Site n° SIT00090) couvrant une surface de 24 ha situé à 2,5 km au Sud du site d'intérêt.

IV. Description des investigations de terrain

Les investigations de terrain, conduites le 19 juin 2019, ont vu la réalisation de vingt (20) sondages pour prélèvement d'échantillons de sol au droit du site d'intérêt.

IV.1. Reconnaissance des sols

IV.1.1. Réalisation des sondages

Compte tenu du contexte du projet, il a été réalisé vingt (20) sondages sur l'ensemble du site d'intérêt, dont dix (10), notés ST1 à ST10, sur le pourtour immédiat du stade au droit de l'emplacement des futures tribunes côté Nord, côté Est et côté Sud et dix (10), notés ST11 à ST20, implantés sur les autres secteurs sur lesquels il est prévu l'aménagement de parvis et de parking.

Il est précisé qu'aucune source potentielle de pollution n'a été identifiée dans le cadre de la visite approfondie du site et qu'il n'existe selon les responsables du site aucun réservoir enterré de stockage d'hydrocarbures dans le périmètre concerné par l'étude. En l'absence de zones sources potentielles de pollution, les sondages ont été implantés de façon aléatoire.

Au droit de l'emplacement des futures tribunes, la densité des sondages est de l'ordre de un (1) sondage pour 1 000 m². Au droit des zones de parvis et de parking sur lesquelles les aménagements prévus sont plus légers, la densité des sondages retenue est plus faible (1 sondage pour 12 000 m²).

Les sondages ont été réalisés à la tarière mécanique de diamètre 152 mm et ont été descendus à une profondeur de 3 mètres. Tous les sondages réalisés ont été soigneusement rebouchés à l'issue de l'opération de prélèvement.

Le profil général des terrains recoupés est constitué, sous le niveau de terre végétale lorsqu'il existe, d'un premier horizon d'argiles ou de sables fins à très fins selon les endroits surmontant un second horizon de sables volcaniques fins à grossiers. Il est précisé que quelques sondages n'ont recoupé que des cendres ou sables volcaniques sur toute l'épaisseur sondée de la surface jusqu'en fond de sondage.

- Le plan d'implantation des sondages est présenté en Annexe III.
- Les photographies de chantier sont présentées en Annexe IV.
- Les profils lithologiques des sondages sont présentés en Annexe V.

IV.1.2. Description des observations organoleptiques et mesures de terrain

Lors de la réalisation des sondages, il a été réalisé une observation visuelle et organoleptique (couleur, odeur) des sols, ainsi qu'une mesure de la teneur en composés organiques volatils (COV) des gaz du sol.

Cette mesure a été réalisée *in-situ* sur chacun des prélèvements à l'aide d'un appareil de mesure par détection à photoionisation (PID) de marque RAE (modèle MiniRAE 3000), régulièrement calibré. Un détecteur à photoionisation est un appareil qui détecte et mesure la teneur en composés organiques volatils à l'aide d'une lampe qui émet un rayonnement ultraviolet permettant d'ioniser les molécules d'hydrocarbures volatils. Durant le processus d'ionisation, des électrons sont générés et produisent un courant électrique proportionnel à leur nombre dont le signal est alors converti en concentration totale de composés volatils. Cette mesure est tout à fait adaptée au terrain puisque le temps de réponse d'un analyseur PID est de l'ordre de 2 à 5 secondes, ce qui permet de mesurer des concentrations très ponctuelles. Le résultat de cette mesure est exprimé en ppm (parties par million).

Les observations visuelles, ainsi que les résultats de la mesure des teneurs en COV effectuée *in-situ* sur les gaz du sol lors de la réalisation des sondages sont présentés dans les Tableaux 1 et 2 ci-après.

Aucun indice organoleptique notable de pollution n'a été relevé sur l'ensemble des sondages réalisés.

Par ailleurs, les mesures des teneurs en composés organiques volatils (COV) effectuées *in-situ* sur les gaz du sol lors de la réalisation des sondages montrent des résultats systématiquement inférieurs au seuil de quantification (<0,1 ppm), traduisant l'absence d'impact de toute molécule organique volatile sur les sols investigués.

IV.1.3. Modalités de prélèvement des échantillons de sol

Les échantillons ont été prélevés selon les règles de l'art, dans un flaconnage adapté au type d'analyse prévu à l'aide de gants en latex, jetables et changés à chaque prise. Les flacons contenant les prélèvements ont été fermés hermétiquement, étiquetés et stockés à l'abri de la lumière dans un conteneur réfrigéré (4°C) pour envoi au laboratoire d'analyse. Chaque prélèvement de sol a été effectué en doublon : un échantillon destiné à l'analyse en laboratoire et un réplicat de contrôle conservé par nos soins en chambre froide (4°C) pendant une durée maximale de trois mois à compter de la fin de l'étude.

Il a été prélevé un (1) échantillon représentatif de chacun des horizons recoupés par les vingt (20) sondages réalisés.

Un total de quarante-quatre (44) échantillons unitaires a ainsi été prélevé dans le cadre de la campagne de reconnaissance.

Neuf (9) échantillons composites ont ensuite été constitués en mélangeant une proportion équivalente de plusieurs échantillons unitaires prélevés sur un secteur donné et représentatifs d'une lithologie similaire. La composition de ces échantillons composites est détaillée dans le Tableau 3 ci-après.

Deux (2) échantillons composites représentatifs des deux horizons de sol recoupés au droit de l'emplacement de la futur tribune Nord (échantillons COMP ST1-2-3.N1 et COMP ST1-2-3.N2) ont ainsi été constitués.

Deux (2) échantillons composites représentatifs des deux horizons de sol recoupés au droit de l'emplacement de la futur tribune Est (échantillons COMP ST4-5.N1 et COMP ST4-5-6-7.N2) ont également été constitués : il est précisé que l'échantillon composite COMP ST4-5.N1 est uniquement représentatif de l'horizon d'argiles noires recoupé dans la partie Nord de ce secteur par les sondages ST4 et ST5, les sables volcaniques recoupés dès la surface par les deux autres sondages (ST6 et ST7) pouvant être assimilés à l'horizon sous-jacent.

Deux (2) échantillons composites représentatifs des deux horizons de sol recoupés au droit de l'emplacement de la futur tribune Sud (échantillons COMP ST9-10.N1 et COMP ST8-9-10.N2) ont également été constitués.

Il a par ailleurs été constitué un (1) échantillon composite (noté COMP ST11-12-13-14.N1) représentatif du premier niveau de sol recoupé sur le secteur Est du site d'intérêt (zone verte actuelle située entre le stade et les rues Robert Lemoy et Victorien Sardou), un (1) échantillon composite (noté COMP ST15-16-17.N1) représentatif du premier niveau de sol recoupé au droit des zones de parking situées à l'Ouest de la tribune Ouest et un (1) dernier échantillon composite (noté COMP ST19-20.N1) représentatif du premier niveau de sol recoupé au droit du terrain de sport situé le plus à l'Ouest.

Pack inerte

Tableau 1 : Résultats obtenus pour l'analyse des COV effectuée *in-situ* sur les gaz du sol lors de l'opération de sondage et programme analytique retenu pour les différents échantillons prélevés (sondages ST1 à ST10)

Localisation Date de	Sondage	Echantillon	Horizon	Lithologie	Indices	cov		Programme analytique		
Localisation	prélèvement	Solidage	Echantillon	(cm)	Littiologie	organoleptiques	(ppm)	HCT C ₁₀ -C ₄₀	Pack 12 EM	
	19/06/2019	ST1	ST1.0	0-50	Terre végétale argileuse marron	RAS	<0,1			
			ST1.50	50-200	Sables volcaniques grossiers noirs	RAS	<0,1			
			ST1.200	200-300	Sables cendrés volcaniques fins noirs	RAS	<0,1			
Tribune Nord	19/06/2019	ST2	ST2.0	0-60	Terre végétale argileuse marron	RAS	<0,1	✓	✓	
Tribuile Noru			ST2.60	60-200	Sables volcaniques grossiers noirs	RAS	<0,1			
			ST2.200	200-300	Sables cendrés volcaniques très fins noirs	RAS	<0,1			
	19/06/2019	ST3	ST3.0	0-120	Terre végétale argileuse marron	RAS	<0,1			
			ST3.120	120-300	Sables volcaniques fins puis grossiers noirs	RAS	<0,1			
	19/06/2019	ST4	ST4.0	0-190	Argiles noires	RAS	<0,1	✓	1	
			ST4.190	190-300	Sables volcaniques grossiers noirs	RAS	<0,1			
	19/06/2019	ST5	ST5.0	0-180	Argiles noires	RAS	<0,1			
			ST5.180	180-300	Sables volcaniques grossiers noirs très humides à partir de 2,8 mètres	RAS	<0,1			
Tribune Est	19/06/2019	ST6	ST6.0	0-180	Sables volcaniques fins noirs à passées marron	RAS	<0,1	1	1	
			ST6.180	180-280	Sables volcaniques grossiers noirs humides en fond	RAS	<0,1			
			ST6.280	280-300	Limons sableux noirs humides	RAS	<0,1			
	19/06/2019	ST7	ST7.0	0-180	Cendres volcaniques beiges à blanches	RAS	<0,1			
			ST7.180	180-300	Sables volcaniques grossiers noirs très humides à partir de 2,8 mètres	RAS	<0,1			
	19/06/2019	ST8	ST8.0	0-160	Sables argileux marron à noirs	RAS	<0,1	1	1	
			ST8.160	160-300	Sables volcaniques grossiers noirs très humides à partir de 2,8 mètres	RAS	<0,1			
Tribune Sud	19/06/2019	ST9	ST9.0	0-160	Argiles marron	RAS	<0,1			
Tribune Sud			ST9.160	160-300	Sables volcaniques grossiers noirs humides à partir de 2,8 mètres	RAS	<0,1			
	19/06/2019	ST10	ST10.25	25-180	Argiles marron foncé compactes	RAS	<0,1	1	1	
			ST10.180	180-300	Sables volcaniques grossiers noirs humides à partir de 2,9 mètres	RAS	<0,1			

COV : composés organiques volatils / RAS : rien à signaler

HCT C₁₀-C₄₀ : Hydrocarbures totaux

Pack 12 EM : éléments métalliques : Sb, As, Ba, Cd, Cr tot., Cu, Hg, Mo, Ni, Pb, Se, Zn
Pack inerte : Pack analytique comprenant l'ensemble des analyses nécessaires à la définition
d'un matériau inerte conformément aux critères de l'arrêté du 12 décembre 2014

✓ Analyses effectuées sur des échantillons de sol unitaires

✓ Analyses effectuées sur des échantillons de sol composites

Le plan d'implantation des sondages est présenté en Annexe III.

Résultats obtenus pour l'analyse des COV effectuée in-situ sur les gaz du sol lors de l'opération de sondage Tableau 2: et programme analytique retenu pour les différents échantillons prélevés (sondages ST11 à ST20)

	Date de			Horizon		Indices	cov		Programme analytique
Localisation	prélèvement	Sondage	Echantillon	(cm)	Lithologie	organoleptiques	(ppm)	HCT C ₁₀ -C ₄₀	Pack 12 EM
Nord de la	19/06/2019	ST11	ST11.10	10-160	Sables très fins marron	RAS	<0,1		
tribune Nord			ST11.160	160-300	Sables volcaniques grossiers noirs	RAS	<0,1		
	19/06/2019	ST12	ST12.0	0-150	Sables fins marron	RAS	<0,1	✓	✓
			ST12.150	150-300	Sables volcaniques grossiers noirs humides à partir de 2,8 mètres	RAS	<0,1		
Est de la	19/06/2019	ST13	ST13.0	0-170	Cendres volcaniques marron à grises très fines et très légères	RAS	<0,1		
tribune Est			ST13.170	170-300	Sables volcaniques grossiers noirs humides à partir de 2,5 mètres	RAS	<0,1		
	19/06/2019	ST14	ST14.0	0-160	Sables fins légèrement argileux marron en mélange avec des cendres volcaniques très fines grises	RAS	<0,1	✓	1
			ST14.160	160-300	Sables volcaniques fins noirs	RAS	<0,1		
	19/06/2019	ST15	ST15.20	20-180	Sables volcaniques fins noirs	RAS	<0,1	1	1
			ST15.180	180-300	Sables volcaniques grossiers humides à partir de 2,5 mètres avec passées de limons argileux marron	RAS	<0,1		
	19/06/2019	ST16	ST16.0	0-50	Terre végétale argileuse marron	RAS	<0,1		
			ST16.50	50-150	Sables volcaniques fins à grossiers noirs	RAS	<0,1		
Ouest de la tribune Ouest			ST16.150	150-300	Sables volcaniques grossiers noirs humides à partir de 2,5 mètres avec passées de limons argileux marron	RAS	<0,1		
	19/06/2019	ST17	ST17.0	0-150	Sables volcaniques fins noirs légèrement argileux sur les 50 premiers cm	RAS	<0,1	1	1
			ST17.150	150-300	Sables volcaniques grossiers noirs	RAS	<0,1		
	19/06/2019	ST18	ST18.0	0-150	Sables argileux marron	RAS	<0,1	✓	1
			ST18.150	150-300	Sables volcaniques noirs très fins entre 2,5 et 3 mètres	RAS	<0,1		
	19/06/2019	ST19	ST19.0	0-190	Sables très fins marron	RAS	<0,1		
Terrain Ouest			ST19.190	190-300	Sables volcaniques grossiers noirs avec passages argileux marron humides vers 2,5 mètres	RAS	<0,1		
renam Ouest	19/06/2019	ST20	ST20.0	0-180	Sables très fins marron	RAS	<0,1		
			ST20.180	180-300	Sables volcaniques grossiers noirs humides vers 2,5 mètres	RAS	<0,1		

COV : composés organiques volatils / RAS : rien à signaler

Pack 12 EM: éléments métalliques: Sb, As, Ba, Cd, Cr tot., Cu, Hg, Mo, Ni, Pb, Se, Zn Pack inerte : Pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte conformément aux critères de l'arrêté du 12 décembre 2014

Analyses effectuées sur des échantillons de sol unitaires

✓ Analyses effectuées sur des échantillons de sol composites

Le plan d'implantation des sondages est présenté en Annexe III.

Tableau 3 : Composition des échantillons composites constitués à l'issue de la campagne de reconnaissance

Localisation	Date de prélèvement	Echantillons unitaires	Horizon (cm)	Lithologie	Indices organoleptiques	COV (ppm)	Echantillons composites	Indices organoleptiques	COV (ppm)
		ST1.0	0-50	Terre végétale argileuse marron	RAS	<0,1			
Tribune Nord	19/06/2019	ST2.0	0-60	Terre végétale argileuse marron	RAS	<0,1	COMP ST1-2-3.N1	RAS	<0,1
		ST3.0	0-120	Terre végétale argileuse marron	RAS <0,1				
Tribune Nord		ST1.50	50-200	Sables volcaniques grossiers noirs	RAS	<0,1			
	19/06/2019	ST2.60	60-200	Sables volcaniques grossiers noirs	RAS	<0,1	COMP ST1-2-3.N2	RAS	<0,1
		ST3.120	120-300	Sables volcaniques fins puis grossiers noirs	RAS	<0,1			
	19/06/2019	ST4.0	0-190	Argiles noires	RAS	<0,1	COMP	RAS	<0,1
	19/00/2019	ST5.0	0-180	Argiles noires	RAS	<0,1	ST4-5.N1	NAS	ζ0, 1
Tribune Est		ST4.190	190-300	Sables volcaniques grossiers noirs	RAS	<0,1			
Tribune Est	19/06/2019	ST5.180	180-300	Sables volcaniques grossiers noirs très humides à partir de 2,8 mètres	RAS	<0,1	СОМР	RAS	<0.1
	19/00/2019	ST6.180	180-280	Sables volcaniques grossiers noirs humides en fond	RAS	<0,1	ST4-5-6-7.N2		ζ0, 1
		ST7.180	180-300	Sables volcaniques grossiers noirs très humides à partir de 2,8 mètres	RAS	<0,1			
	19/06/2019	ST9.0	0-160	Argiles marron	RAS	COMP		RAS	<0.1
	19/00/2019	ST10.25	25-180	Argiles marron foncé compactes	RAS	<0,1	ST9-10.N1		10,1
Tribune Sud		ST8.160	160-300	Sables volcaniques grossiers noirs très humides à partir de 2,8 mètres	RAS	<0,1		RAS	
	19/06/2019	ST9.160	160-300	Sables volcaniques grossiers noirs humides à partir de 2,8 mètres	RAS	<0,1	COMP ST8-9-10.N2		<0,1
		ST10.180	180-300	Sables volcaniques grossiers noirs humides à partir de 2,9 mètres	RAS	<0,1			
		ST11.10	10-160	Sables très fins marron	RAS	<0,1			
Secteur Est de la zone d'intérêt	19/06/2019	ST12.0	0-150	Sables fins marron	RAS	<0,1	СОМР	RAS	0.4
(zone verte)	13/00/2013	ST13.0	0-170	Cendres volcaniques marron à grises très fines et très légères	RAS	<0,1	ST11-12-13-14.N1	CAJ	<0,1
		ST14.0	0-160	Sables fins légèrement argileux marron en mélange avec des cendres volcaniques très fines grises	RAS	<0,1			
Parkings Ouest		ST15.20	20-180	Sables volcaniques fins noirs	RAS	<0,1			
(Ouest de la tribune Ouest)	19/06/2019	ST16.50	50-150	Sables volcaniques fins à grossiers noirs	RAS	<0,1	COMP ST15-16-17.N1	RAS	<0,1
		ST17.0	0-150	Sables volcaniques fins noirs légèrement argileux sur les 50 premiers cm	RAS	<0,1			
Terrain Ouest	19/06/2019	ST19.0	0-190	Sables très fins marron	RAS	<0,1	СОМР	RAS	<0,1
remain Ouesi	19/00/2019	ST20.0	0-180	Sables très fins marron	RAS	<0,1	ST19-20.N1	CAJ	\U, I

COV : composés organiques volatils / RAS : Rien à signaler

Le plan d'implantation des sondages est présenté en Annexe III.

IV.2. Définition du programme analytique

Il est rappelé qu'il s'agit de caractériser les sols susceptibles d'être terrassés et éliminés hors site dans le cadre des travaux d'extension des tribunes de façon à évaluer leur qualité et pouvoir déterminer les exutoires envisageables.

IV.2.1. Sélection des paramètres à analyser

Il a été réalisé l'ensemble du panel d'analyses nécessaires à la définition d'un matériau inerte conformément au programme analytique fixé par l'arrêté du 12 décembre 2014 qui comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24 heures selon la norme NF EN 12457-2 sur dix (10) échantillons de sol (9 échantillons composites et 1 échantillon unitaire); la liste des paramètres analysés dans le cadre de cette caractérisation est présentée dans le Tableau 4 ci-après.

En plus de ces analyses, il a également été réalisé l'analyse des hydrocarbures totaux (HCT C_{10} - C_{40}), ainsi que la recherche et la quantification de douze éléments métalliques couramment recherchés dans les sols sur dix (10) échantillons de sol unitaires.

IV.2.2. Descriptif des différentes analyses réalisées

Les différents types d'analyse réalisés sont décrits ci-après.

Analyse de caractérisation des matériaux inertes selon l'arrêté du 12 décembre 2014

Cette analyse permet de caractériser un matériau afin de vérifier s'il peut être stocké en centre de stockage de classe 3 (ou ISDI). Le programme analytique est donc conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24 heures selon la norme NF EN 12457-2. La liste des analyses est présentée pour mémoire dans le Tableau 4 page suivante.

Cette analyse a été réalisée sur neuf (9) échantillons de sol composites et sur un (1) échantillon de sol unitaire.

■ Analyse quantitative des hydrocarbures totaux (HCT C₁₀-C₄₀)

Cette analyse permet de déterminer la concentration en hydrocarbures totaux, ainsi que la répartition des différentes fractions carbonées les composant. Ainsi, les molécules hydrocarbonées détectées sont réparties suivant les fractions suivantes : C_{10} - C_{12} ; C_{12} - C_{16} ; C_{16} - C_{21} ; C_{21} - C_{35} et C_{35} - C_{40} . Cette analyse est réalisée par GC-FID selon la norme NF EN ISO 16703 ; la limite de quantification est de 20 mg/kg_{MS}.

Cette analyse a été réalisée sur dix (10) échantillons de sol unitaires.

Analyse quantitative des éléments métalliques (Pack 12 éléments) :

Cette analyse consiste en la recherche et la quantification de douze (12) éléments métalliques couramment recherchés dans les sols (antimoine, arsenic, baryum, cadmium, chrome, cuivre, mercure, molybdène, nickel, plomb, sélénium et zinc). Elle est réalisée par ICP-MS selon la norme NF EN ISO 17294-2. Les limites de quantification sont variables en fonction des éléments.

Cette analyse a été réalisée sur dix (10) échantillons de sol unitaires.

Les analyses ont été réalisées par les Laboratoires Wessling, agréés par le Ministère de la Transition écologique et solidaire (MTes) et possédant les accréditations COFRAC.

Les Accréditations des Laboratoires Wessling sont présentées en Annexe VII.

Tableau 4 : Programme analytique retenu pour les différents échantillons de sol analysés

Marchane	Paramètres	Norme	Limite de quantification	Echantillons concernés			
Microsophies analysis monografiques (AD) Surface #FRINSD 11943 Surface #FRINSD 11943 Over #FRINSD 11944	(analyse sur matériau brut)	Norme		1er horizon	2nd horizon		
Marcaching an option group (miles an option group (miles an option group) Seas N P EN INC ANSE 0.07 m/ys an option group (miles and proper and property and proper and property and proper and property and proper and property and proper and property and	Hydrocarbures totaux (HCT C ₁₀ -C ₄₀)	NF EN ISO 16703	20 mg/kg _{MS}		COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2		
See NE DN 20 cets See See NE DN 20 cets See	Hydrocarbures aromatiques monocycliques (CAV)	Selon NF EN ISO 11423-1	0,5 mg/kg _{MS}	ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1	COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2		
Second particular part Second Sec	Hydrocarbures aromatiques polycycliques (HAP)	NF ISO 18287	0,05 mg/kg _{MS}	ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1	COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2		
Second	Polychlorobiphényles (PCB)	Selon NF EN ISO 6468	0,01 mg/kg _{MS}	ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1	COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2		
	Carbone organique total (COT)	NF EN 1484	0,20%	ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1	COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2		
America (89) Sean N F F N SO 17244 2 mg/lage STA , STA, STA, STA, STA, STA, STA, STA	Eléments métalliques						
Second S	·	Selon NF EN ISO 17294-2	10 mg/kg _{MS}	ST2.0, ST4.0, ST6.0, ST8.0, ST10.25, ST12.0, ST14.0, ST15.20, ST17.0, ST18.0			
Camburn (Cr) Select NF EN SD (17944 1 mg/Nag 1	Arsenic (As)	Selon NF EN ISO 17294-2	2 mg/kg _{MS}	ST2.0, ST4.0, ST6.0, ST8.0, ST10.25, ST12.0, ST14.0, ST15.20, ST17.0, ST18.0			
Carlon Column (Co) Salon N F N N D 172842 1 maylous 1 mayl	Baryum (Ba)	Selon NF EN ISO 17294-2	0,1 mg/kg _{MS}	ST2.0, ST4.0, ST6.0, ST8.0, ST10.25, ST12.0, ST14.0, ST15.20, ST17.0, ST18.0			
Second FC NO NO 17294 1 mg/log	Cadmium (Cd)	Selon NF EN ISO 17294-2	0,5 mg/kg _{MS}	ST2.0, ST4.0, ST6.0, ST8.0, ST10.25, ST12.0, ST14.0, ST15.20, ST17.0, ST18.0			
Section No. File Section	Chrome total (Cr)	Selon NF EN ISO 17294-2	1 mg/kg _{MS}	ST2.0, ST4.0, ST6.0, ST8.0, ST10.25, ST12.0, ST14.0, ST15.20, ST17.0, ST18.0			
Selan NE No. 1974-92 10 mg/kgs Stat.	Cuivre (Cu)	Selon NF EN ISO 17294-2	1 mg/kg _{MS}	ST2.0, ST4.0, ST6.0, ST8.0, ST10.25, ST12.0, ST14.0, ST15.20, ST17.0, ST18.0			
Select No Portion Physical Select No Select No	Mercure (Hg)	Selon NF EN ISO 17294-2	0,1 mg/kg _{MS}	ST2.0, ST4.0, ST6.0, ST8.0, ST10.25, ST12.0, ST14.0, ST15.20, ST17.0, ST18.0			
Solicy Post Solicy Solicy Post Solicy Solic	Molybdène (Mo)	Selon NF EN ISO 17294-2	10 mg/kg _{MS}	ST2.0, ST4.0, ST6.0, ST8.0, ST10.25, ST12.0, ST14.0, ST15.20, ST17.0, ST18.0			
Selon N E NS O17294-2 Selon N E NS O17294-2 Selon N E NS O17294-2 1 mg/kgr ST2,0, ST4,0, ST8,0, S	Nickel (Ni)	Selon NF EN ISO 17294-2					
Size	Plomb (Pb)	Selon NF EN ISO 17294-2	10 mg/kg _{MS}	ST2.0, ST4.0, ST6.0, ST8.0, ST10.25, ST12.0, ST14.0, ST15.20, ST17.0, ST18.0			
Paramètes (phalyes surfraction adubilitée ; (phalyes surfraction adubili			5 mg/kg _{MS}				
Carlons, anions et éléments non métalliques Silvan NE NIS 0 103041 10 mg/kg _{0.00} 1	Zinc (Zn)	Selon NF EN ISO 17294-2	1 mg/kg _{MS}	ST2.0, ST4.0, ST6.0, ST8.0, ST10.25, ST12.0, ST14.0, ST15.20, ST17.0, ST18.0			
Carlons, anions et étéments non métalliques Silvan NE NIS 0 103041 10 mg/kg _{lis} 517.0, COMP \$11-23.NI, Comp \$14-5.NI, COMP \$11-12-13-4.NI, COMP \$11-12-13-4.NI, COMP \$11-2-13-I.NI, COMP \$11-2-3.NI, COMP \$13-5.NI, COMP \$11-2-13-I.NI, COMP \$11-2-13-I.NI, COMP \$13-5.NI,	Paramàtras				<u> </u>		
Selon NF EN ISO 10304-1 10 mg/kg _{se} Selon NF EN ISO 10304-1 10 mg/kg _{se} S17.0, COMP ST1-2.3 N1, Comp ST4-5.N1, COMP ST1-1-2.13 -14.N1, COMP ST15-16-17.N1, COMP ST19-2.DN1 COMP 1-2.3 N2, COMP ST8-9-10.N2 COMP 1-2.3 N2, COMP ST8-9-10.N2 COMP ST8-9-10.N2 COMP 1-2.3 N2, COMP ST8-9-10.N2 COMP ST8-9-10.N2 COMP 1-2.3 N2, COMP ST8-9-10.N2 COMP ST8-9-10.N	(analyse sur fraction solubilisée ;	Norme	Limite de quantification				
Chiorures (CT) Selon NF EN ISO 10304-1 100 mg/kg _{luc} 517.0, COMP ST14-23.N1, COMP ST19-10.N1, COMP ST11-12-13-14.N1, COMP ST19-12.N1 COMP 119-23.N2, COMP ST4-56-7.N2, COMP ST8-9-10.N2	Cations, anions et éléments non métalliques						
Selon NF EN ISO 10304-1 100 mg/kg/ss Selon NF EN ISO 10304-1 100 mg/kg/ss ST7.0, COMP ST1-2.3.N1, Comp ST4-5.N1, COMP ST1-12-13-14.N1, COMP ST1-16-17.N1, COMP ST19-20.N1 COMP 1-2.3.N2, COMP ST4-5-67.N2, COMP ST8-9-10.N2	Fluorures (F')	Selon NF EN ISO 10304-1	10 mg/kg _{MS}	ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1	COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2		
Eléments métalliques	Chlorures (Cl ⁻)	Selon NF EN ISO 10304-1	100 mg/kg _{MS}	ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1	COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2		
Antimoine (Sb) NF EN ISO 17294-2 O,05 mg/kg _{MS} Antimoine (Sb) NF EN ISO 17294-2 O,03 mg/kg _{MS} Antimoine (Sb) NF EN ISO 17294-2 O,03 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST15-20.N1 Comp ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-3.N1, COMP ST15-16-17.N1, COMP ST15-19-2.N1 Comp ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-3.N1, COMP ST15-16-17.N1, COM	Sulfates (SO ₄ ²)	Selon NF EN ISO 10304-1	100 mg/kg _{MS}	ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1	COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2		
Arsenic (As) Arsenic (As) Arsenic (As) NF EN ISO 17294-2 Baryum (Ba) NF EN ISO 17294-2 O,1 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST19-10.N1, COMP ST19-20.N1 Codmitum (Cd) NF EN ISO 17294-2 O,05 mg/kg _{MS} Cuivre (Cu) NF EN ISO 17294-2 O,05 mg/kg _{MS} Molybdeine (Mo) NF EN ISO 17294-2 O,05 mg/kg _{MS} Molybdeine (Mo) NF EN ISO 17294-2 O,05 mg/kg _{MS} Nickel (Ni) Plomb (Pb) NF EN ISO 17294-2 O,1 mg/kg _{MS} Si7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST19-16-17.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST19-10.N1, COMP ST9-20.N2 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST19-10.N1, COMP ST9-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-13-14.N1, COMP ST19-10.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-13-14.N1, COMP ST19-10.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-13-14.N1, COMP ST19-16-17.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-13-14.N1, COMP ST11-12-13-14.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-13-14.N1, COMP ST11-12-13-14.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-13-14.N1, COMP ST11-12-13-14.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-13-14.N1, COMP ST11-12-13-14.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-13-14.N1, COMP ST11-12-13-14.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-13-14.N1, COMP ST11-12-13-14.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-13-14.N1, COMP ST11-12-13-14.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST11-12-13-14.N1, COMP ST11-12-13-14.N1, COMP ST19-20.N1 ST7.0, COMP ST1-2-3.N1, COMP ST1-2-3.N1, COMP ST11-12-13-14.N	-						
Bayum (Ba) NF EN ISO 17294-2 0,1 mg/kg _{MS} Cadmium (Cd) NF EN ISO 17294-2 0,05 mg/kg _{MS} Cuivre (Cu) NF EN ISO 17294-2 0,05 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST1-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP 12-3.N2, COMP ST4-56-7.N2, COMP ST8-9-10.N2 COMP 12-							
Cadmium (Cd) NF EN ISO 172942 O,05 mg/kg _{MS} Cuivre (Cu) NF EN ISO 172942 O,05 mg/kg _{MS} Cuivre (CH) NF EN ISO 172942 O,05 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 Mercure (Hg) NF EN ISO 172942 O,05 mg/kg _{MS} Mercure (Hg) NF EN ISO 172942 O,01 mg/kg _{MS} Nickel (Ni) NF EN ISO 172942 O,1 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,1 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,1 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,1 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,1 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,1 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,1 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,1 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,1 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,1 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,1 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,1 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,2 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,3 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,4 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,5 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,5 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,5 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,5 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,5 mg/kg _{MS} Sinc (Ch) NF EN ISO 172942 O,5 mg/kg _{MS} Sinc (Ch) Sinc (Ch) NF EN ISO 172942 O,5 mg/kg _{MS} Sinc (Ch)							
Chrome total (Cr) NF EN ISO 17294-2 O,05 mg/kg _{MS} Cuivre (Cu) NF EN ISO 17294-2 O,05 mg/kg _{MS} Mercure (Hg) NF EN ISO 17294-2 O,001 mg/kg _{MS} NF EN ISO 17294-2 O,001 mg/kg _{MS} NF EN ISO 17294-2 O,1 mg/kg _{MS} Nickel (Ni) NF EN ISO 17294-2 O,1 mg/kg _{MS} Sitto, COMP St1-2-3.N1, Comp St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St15-16-17.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St8-9-10.N2 ST7.0, COMP St1-2-3.N1, Comp St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St8-9-10.N2 ST7.0, COMP St1-2-3.N1, Comp St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St8-9-10.N2 ST7.0, COMP St1-2-3.N1, Comp St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St8-9-10.N2 ST7.0, COMP St1-2-3.N1, Comp St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St8-9-10.N2 ST7.0, COMP St1-2-3.N1, Comp St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St8-9-10.N2 ST7.0, COMP St1-2-3.N1, Comp St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St4-5-6-7.N2, COMP St8-9-10.N2 ST7.0, COMP St1-2-3.N1, Comp St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St4-5-6-7.N2, COMP St8-9-10.N2 ST7.0, COMP St1-2-3.N1, Comp St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St4-5-6-7.N2, COMP St8-9-10.N2 ST7.0, COMP St1-2-3.N1, Comp St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St4-5-6-7.N2, COMP St8-9-10.N2 ST7.0, COMP St1-2-3.N1, Comp St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St4-5-6-7.N2, COMP St8-9-10.N2 ST7.0, COMP St1-2-3.N1, Comp St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St4-5-6-7.N2, COMP St8-9-10.N2 ST7.0, COMP St4-5.N1, COMP St9-10.N1, COMP St11-12-13-14.N1, COMP St19-20.N1 COMP 1-2-3.N2, COMP St4-5-6-7			1				
Cuivre (Cu) MF EN ISO 17294-2							
Mercure (Hg) NF EN ISO 17294-2 0,001 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST4-5-67.N2, COMP ST8-9-10.N2 Molybdène (Mo) NF EN ISO 17294-2 0,1 mg/kg _{MS} 0,1 mg/kg _{MS} 5T7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST11-12-13-14.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST8-9-10.N2 Nickel (Ni) NF EN ISO 17294-2 0,1 mg/kg _{MS} 0,1 mg/kg _{MS} 5T7.0, COMP ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST11-12-13-14.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST8-9-10.N2 Sélénium (Se) NF EN ISO 17294-2 0,1 mg/kg _{MS} 0,5 mg/kg _{MS} 0,5 mg/kg _{MS} 5T7.0, COMP ST4-5.N1, COMP ST9-10.N1, COMP ST19-10.N1, COMP ST11-12-13-14.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST8-9-10.N2 Indice Phénol DIN EN ISO 14402 0,1 mg/kg _{MS} 5T7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST8-9-10.N2 Carbone organique total (COT) Selon NF EN 13039 24 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST15-16-17.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2							
Molybdène (Mo) NF EN ISO 17294-2 Nickel (Ni) NF EN ISO 17294-2 NF			1		·		
Nickel (Ni) Nickel (Ni) Nickel (Ni) NF EN ISO 17294-2 Plomb (Pb) NF EN ISO 17294-2 N	·		1		, , , , , , , , , , , , , , , , , , , ,		
Plomb (Pb) NF EN ISO 17294-2 Sélénium (Se) NF EN ISO 17294-2 Zînc (Zn) NF EN ISO 17294-2 NF EN ISO 17							
Sélénium (Se) NF EN ISO 17294-2 Zinc (Zn) 0,1 mg/kg _{MS} Zinc (Zn) ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2 COMP ST8-9-10.N2 Indice Phénol DIN EN ISO 14402 0,1 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2 Carbone organique total (COT) Selon NF EN 13039 24 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST15-16-17.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2	• •						
Zinc (Zn) NF EN ISO 17294-2 0,5 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2 Indice Phénol DIN EN ISO 14402 0,1 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST9-10.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2 Carbone organique total (COT) Selon NF EN 13039 24 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2							
Indice Phénol DIN EN ISO 14402 0,1 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST1-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2 Carbone organique total (COT) Selon NF EN 13039 24 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2							
		DIN EN ISO 14402			COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2		
Fraction soluble NF T90-029 1 000 mg/kg _{MS} ST7.0, COMP ST1-2-3.N1, COMP ST9-10.N1, COMP ST19-10.N1, COMP ST15-16-17.N1, COMP ST19-20.N1 COMP ST4-5-6-7.N2, COMP ST8-9-10.N2	Carbone organique total (COT)	Selon NF EN 13039	24 mg/kg _{MS}	ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1	COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2		
	Fraction soluble	NF T90-029	1 000 mg/kg _{MS}	ST7.0, COMP ST1-2-3.N1, Comp ST4-5.N1, COMP ST9-10.N1, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1, COMP ST19-20.N1	COMP 1-2-3.N2, COMP ST4-5-6-7.N2, COMP ST8-9-10.N2		

En rouge, paramètres à analyser pour la définition d'un matériau inerte selon l'arrêté du 12 décembre 2014 et échantillons ayant fait l'objet de cette caractérisation

(i) Critères à respecter pour l'admission de déchets inertes soumis à la procédure d'acceptation préalable, Annexe 2 de l'arrêté du 12 décembre 2014 fixant la liste des types de déchets inertes admissibles dans des installations de stockage de déchets inertes et les conditions d'exploitation de ces installations.

(ii) Pour les sols, une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le COT sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

(iii) Si le déchet ne respecte pas cette valeur pour les sulfates, il peut être encore jugé conforme aux critères d'admission si la lixiviation ne dépasse pas les valeurs suivantes : 1 500 mg/l à un ratio L/S=0,1 l/kg et 6 000 mg/kg de matière sèche à un ratio L/S=10 l/kg. Il est nécessaire d'utiliser l'essai de percolation NF CEN/TS 14405 pour déterminer la valeur lorsque L/S=0,1 l/kg dans les conditions d'équilibre initial; la valeur correspondant à L/S=10 l/kg peut être déterminée par un essai de lixiviation NF EN 12457-2 ou par un essai de percolation NF CEN/TS 14405 dans des conditions approchant l'équilibre local.

(iv) Si le déchet ne satisfait pas la valeur limite indiquée pour le carbone organique total sur éluat à sa propre valeur de pH, il peut aussi faire l'objet d'un essai de lixiviation NF EN 12457-2 avec un pH compris entre 7,5 et 8,0.

Le déchet peut être jugé conforme aux critères d'admission pour le carbone organique total sur éluat si le résultat de cette détermination ne dépasse pas 500 mg/kg de matière sèche.

(v) Si le déchet ne respecte pas au moins une des valeurs fixées pour les chlorures, les sulfates ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission s'il respecte soit les valeurs associées aux chlorures et aux sulfates, soit celle associée à la fraction soluble.

V. Résultats obtenus pour l'analyse des sols

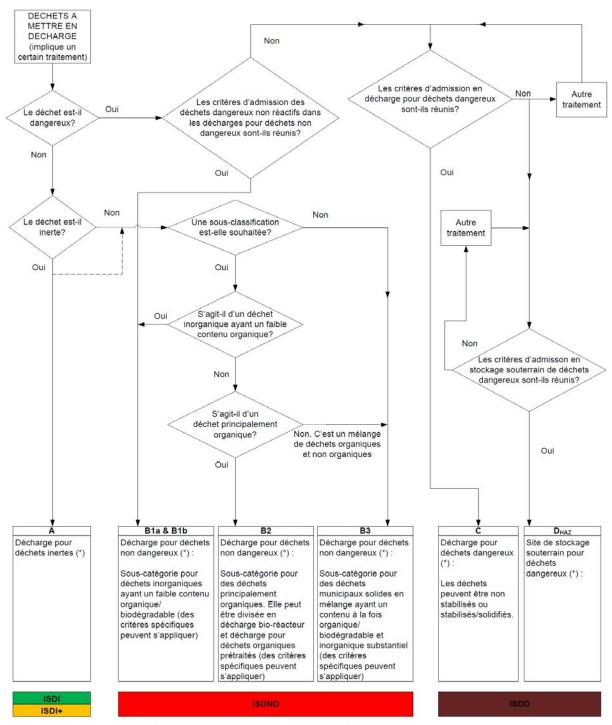
Les résultats analytiques obtenus à l'issue de la campagne de reconnaissance des sols conduite le 19 juin 2019 sont présentés et discutés ci-après.

V.1. Valeurs de référence

V.1.1. Gestion des sols pollués

L'interprétation des résultats analytiques obtenus sera effectuée sur la base des valeurs réglementaires définies par l'arrêté du 12 décembre 2014 relatif aux installations de stockage de déchets inertes et par la Décision n° 2003/33/CE du 19 décembre 2002 établissant les critères et procédures d'admission des déchets (ou sols pollués) dans les décharges, conformément à l'article 16 et à l'annexe II de la directive 1999/31/CE.

Le diagramme présenté sur la Figure 10 page suivante donne une vue d'ensemble des possibilités de mise en décharge de déchets (ou sols pollués) prévues par la Directive 1999/31/CE du 26 avril 1999 concernant la mise en décharge des déchets. Conformément à l'article 6, point a), de la Directive 1999/31/CE, la plupart des déchets doivent faire l'objet d'un traitement avant leur mise en décharge. La définition générale du « traitement » est relativement générale et est laissée, dans une large mesure, à l'appréciation des autorités compétentes des États membres.


Si le déchet n'est pas dangereux (au sens de la Directive 2008/98/CE relative aux déchets dangereux et de la liste de déchets actuelle) et s'il remplit les critères définis pour les déchets devant être stockés dans une installation de stockage de déchets inertes (catégorie A, Figure 10 et Tableau 5), le déchet peut être admis dans ce type d'installation. Cette catégorie peut être élargie aux déchets pour lesquels les valeurs de concentration mesurées sur lixiviat (à l'exception de celle relative au carbone organique total) sont comprises entre la valeur limite fixée par l'arrêté du 12 décembre 2014 et trois (3) fois cette valeur limite; ces déchets seront considérés comme des déchets « inertes + » et pourront être stockés dans une « ISDI + ». Un déchet inerte (ou « inerte + ») peut aussi être placé dans une installation de stockage de déchets non dangereux, à condition qu'il remplisse les critères appropriés.

Si le déchet n'est ni dangereux, ni inerte (ou « inerte + »), il s'agit d'un déchet non dangereux, qui doit alors être stocké dans une installation de stockage de déchets non dangereux (catégorie B, Figure 10 et Tableau 5) ou traité pour valorisation ultérieure (filière biocentre par exemple pour les sols impactés par les hydrocarbures).

Si le déchet est dangereux (au sens de la Directive 2008/98/CE relative aux déchets dangereux et de la liste de déchets actuelle), son traitement peut lui permettre de remplir les critères d'admission des déchets dangereux stables et non réactifs admissibles dans les installations de stockage de déchets non dangereux (catégorie B). Si le déchet dangereux ne remplit pas les critères d'admission dans une installation de stockage de déchets non dangereux, il peut être placé dans une installation de stockage de déchets dangereux s'il remplit les critères d'admission (catégorie C, Figure 10 et Tableau 5). Si les critères d'admission dans une installation de stockage de déchets dangereux ne sont pas remplis, le déchet peut être soumis à un autre traitement et être à nouveau soumis à des essais correspondant aux critères établis, jusqu'à ce que ces derniers soient remplis.

Les critères règlementaires permettant de classer les déchets/matériaux dans les catégories de déchets inertes, déchets non dangereux et déchets dangereux, fixés par l'arrêté du 12 décembre 2014 et par la Décision n° 2003/33/CE du 19 décembre 2002 sont rappelés dans le Tableau 5 ci-après.

(*) En principe, le stockage souterrain est également possible pour les déchets inertes et non dangereux

Figure 10 : Diagramme relatif à l'orientation des déchets vers les différents types de décharge définis par la Directive 1999/31/CE

(# source : Décision n° 2003/33/CE du 19/12/02 établissant les critères et procédures d'admission des déchets dans les décharges)

Tableau 5 : Catégories des différents types de déchets/matériaux et filières de gestion associées

Catégories		Catégorie A	Catégorie B	Catégorie C
Filières associées		Installations de stockage de déchets inertes (ISDI) ⁽ⁱ⁾	Installations de stockage de déchets non dangereux (ISDND)	Installations de stockage de déchets dangereux (ISDD)
Paramètres		1	T	1
(analyse sur matériau brut)	Unités			
		I ====	(1)	(1)
Hydrocarbures totaux (HCT C ₁₀ -C ₄₀)	mg/kg _{MS}	500	(1)	(1)
Hydrocarbures aromatiques monocycliques (CAV)	mg/kg _{MS}	6	(1)	(1)
Hydrocarbures aromatiques polycycliques (HAP)	mg/kg _{MS}	50	(1)	(1)
Polychlorobiphényles (PCB)	mg/kg _{MS}	1	(1)	(1)
Composés organohalogénés volatils (COHV)	mg/kg _{MS}			
Carbone organique total (COT)	% MS	3 ⁽ⁱⁱ⁾	5	6
Béments métalliques	mg/kg _{MS}	(1)	(1)	(1)
Paramètres		1		-
(analyse sur fraction solubilisée ; lixiviation 24 h avec L/S = 10 l/kg)	Unités			
Cations, anions et éléments non métalliques				
Fluorures (F')	mg/kg _{MS}	10	150	500
Chlorures (Cl ⁻)	mg/kg _{MS}	800 ^(v)	15 000	25 000
Sulfates (SO ₄ ²⁻)	mg/kg _{MS}	1 000 ^{(iii) (v)}	20 000	50 000
Béments métalliques				
Antimoine (Sb)	mg/kg _{MS}	0,06	0,7	5
Arsenic (As)	mg/kg _{Ms}	0,5	2	25
Baryum (Ba)	mg/kg _{MS}	20	100	300
Cadmium (Cd)	mg/kg _{MS}	0,04	1	5
Chrome total (Cr)	mg/kg _{MS}	0,5	10	70
Cuivre (Cu)	mg/kg _{MS}	2	50	100
Mercure (Hg)	mg/kg _{MS}	0,01	0,2	2
Molybdène (Mo)	mg/kg _{MS}	0,5	10	30
Nickel (Ni)	mg/kg _{MS}	0,4	10	40
Plomb (Pb)	mg/kg _{MS}	0,5	10	50
Sélénium (Se)	mg/kg _{MS}	0,1	0,5	7
Zinc (Zn)	mg/kg _{Ms}	4	50	200
Indice Phénol	mg/kg _{MS}	1	-	-
Carbone organique total (COT)	mg/kg _{MS}	500 ^(iv)	800	1 000
Fraction soluble	mg/kg _{MS}	4 000 (v)	60 000	100 000
	*			

⁽i) Critères à respecter pour l'admission de déchets inertes soumis à la procédure d'acceptation préalable, Annexe 2 de l'arrêté du 12 décembre 2014 fixant la liste des types de déchets inertes admissibles dans des installations de stockage de déchets inertes et les conditions d'exploitation de ces installations.

(1) Les valeurs limites pour ces paramètres sont fixées au cas par cas par les arrêtés préfectoraux encadrant spécifiquement l'activité de chaque installation de stockage.

Source : Décision n° 2003/33/CE du 19 décembre 2002 et Arrêté du 12 décembre 2014.

⁽ii) Pour les sols, une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg de matière sèche soit respectée pour le COT sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

⁽iii) Si le déchet ne respecte pas cette valeur pour les sulfates, il peut être encore jugé conforme aux critères d'admission si la lixiviation ne dépasse pas les valeurs suivantes: 1 500 mg/l à un ratio L/S=0,1 l/kg et 6 000 mg/kg de matière sèche à un ratio L/S=10 l/kg. Il est nécessaire d'utiliser l'essai de percolation NF CEN/TS 14405 pour déterminer la valeur lorsque L/S=0,1 l/kg dans les conditions d'équilibre initial; la valeur correspondant à L/S=10 l/kg peut être déterminée par un essai de lixiviation NF EN 12457-2 ou par un essai de percolation NF CEN/TS 14405 dans des conditions approchant l'équilibre local.

⁽iv) Si le déchet ne satisfait pas la valeur limite indiquée pour le carbone organique total sur éluat à sa propre valeur de pH, il peut aussi faire l'objet d'un essai de lixiviation NF EN 12457-2 avec un pH compris entre 7,5 et 8,0. Le déchet peut être jugé conforme aux critères d'admission pour le carbone organique total sur éluat si le résultat de cette détermination ne dépasse pas 500 mg/kg de matière sèche.

⁽v) Si le déchet ne respecte pas au moins une des valeurs fixées pour les chlorures, les sulfates ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission s'il respecte soit les valeurs associées aux chlorures et aux sulfates, soit celle associée à la fraction soluble.

V.1.2. Qualité des sols

La méthodologie française définie par le ministère chargé de l'Environnement ne propose pas de valeurs guides en terme de qualité des sols. L'interprétation des résultats analytiques doit donc être effectuée en fonction du fond géochimique local de façon à comparer l'état de la zone d'intérêt à celui des milieux naturels voisins ou à son état initial.

Dans le cas présent, les concentrations en éléments métalliques mesurées sur le matériau brut seront comparées à la valeur médiane représentative du fond géochimique français déterminée dans le cadre du programme INRA-ASPITET; les valeurs retenues, présentées dans le Tableau 6 ci-dessous, sont les valeurs médianes obtenues suite à l'analyse de 1 874 échantillons de sol représentatifs d'horizons de surface et d'horizons profonds de sols agricoles et forestiers.

Tableau 6 : Valeurs médianes représentatives du fond géochimique français pour les éléments métalliques déterminées dans le cadre du programme INRA-ASPITET

Paramètres (analyse sur matériau brut)	Unités	Teneurs médianes en ETM dans les sols français	Norme	Limite de quantification
Antimoine (Sb)	mg/kg _{MS}	nd	NF EN ISO 17294-2	10 mg/kg _{MS}
Arsenic (As)	mg/kg _{MS}	nd	NF EN ISO 17294-2	2 mg/kg _{MS}
Baryum (Ba)	mg/kg _{MS}	nd	NF EN ISO 17294-2	0,1 mg/kg _{MS}
Cadmium (Cd)	mg/kg _{MS}	0,19	NF EN ISO 17294-2	0,5 mg/kg _{MS}
Chrome total (Cr)	mg/kg _{MS}	59,50	NF EN ISO 17294-2	1 mg/kg _{MS}
Cuivre (Cu)	mg/kg _{MS}	13,50	NF EN ISO 17294-2	1 mg/kg _{MS}
Mercure (Hg)	mg/kg _{MS}	nd	NF EN ISO 17294-2	0,1 mg/kg _{MS}
Molybdène (Mo)	mg/kg _{MS}	nd	NF EN ISO 17294-2	10 mg/kg _{MS}
Nickel (Ni)	mg/kg _{MS}	27,20	NF EN ISO 17294-2	1 mg/kg _{MS}
Plomb (Pb)	mg/kg _{MS}	31,60	NF EN ISO 17294-2	10 mg/kg _{MS}
Sélénium (Se)	mg/kg _{MS}	nd	NF EN ISO 17294-2	5 mg/kg _{MS}
Zinc (Zn)	mg/kg _{MS}	72,00	NF EN ISO 17294-2	1 mg/kg _{MS}

Source : données issues du programme INRA-ASPITET ; population générale de 1874 échantillons (horizons de surface et horizons profonds, sols agricoles et forestiers) nd : non déterminé

Pour les substances organiques (hydrocarbures aliphatiques et aromatiques, polychlorobiphényles, etc...), il peut être considéré que le bruit de fond local est équivalent aux limites de quantification, c'est-à-dire que tout résultat significativement supérieur au seuil de quantification de la méthode analytique peut être considéré comme représentatif d'une anomalie.

V.2. Résultats analytiques

Il est rappelé que dix (10) échantillons de sol, dont six (6) représentatifs du premier horizon de sol recoupé jusqu'à 0,5 à 1,9 mètre de profondeur et trois (3) représentatifs du second horizon de sol recoupé entre 0,5 à 1,9 mètre de profondeur et 3 mètres de profondeur ont fait l'objet d'une caractérisation complète vis-à-vis des critères définissant les matériaux inertes fixés par l'arrêté du 12 décembre 2014.

Par ailleurs, dix (10) échantillons unitaires, représentatifs du premier horizon de sol recoupé par dix (10) des vingt (20) sondages réalisés, ont fait l'objet d'une analyse sur le matériau brut des hydrocarbures totaux (HCT C_{10} - C_{40}) et de douze éléments métalliques couramment recherchés dans les sols (Sb, As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, Zn).

V.2.1. Résultats obtenus pour la caractérisation des sols vis-à-vis des critères définissant les matériaux inertes

Il est rappelé que la caractérisation vis-à-vis des critères définissant un matériau inerte comprend la réalisation de différentes analyses sur le matériau brut, ainsi que sur la fraction solubilisée après lixiviation de 24 heures selon la norme NF EN 12457-2.

Les résultats obtenus sont présentés dans les Tableaux 7 à 10 et sont discutés ci-après.

Résultats obtenus sur le matériau brut

Identification des dépassements constatés sur le matériau brut

Des dépassements de la valeur limite fixée par l'arrêté du 12 décembre 2014 à 3 % pour le carbone organique total (COT) ont été relevés sur le matériau brut pour huit (8) des dix (10) échantillons analysés. Il s'agit des échantillons COMP ST1-2-3.N1, COMP ST1-2-3.N2, COMP ST4-5.N1, ST7.0, COMP ST4-5-6-7.N2, COMP ST9-10.N1, COMP ST15-16-17.N1 et COMP ST19-20.N1, qui présentent des valeurs pour ce paramètre comprises entre 3,6 et 8,9 %. Il est toutefois précisé que, dans la mesure où la valeur limite de 500 mg/kg_{MS} est respectée pour l'analyse du carbone organique total sur éluât, les valeurs supérieures à 3 % mesurées sur le matériau brut peuvent être admises.

Aucun autre dépassement des valeurs limites fixées par l'arrêté du 12 décembre 2014 n'a été constaté sur le matériau brut pour les dix (10) échantillons analysés.

Autres résultats obtenus sur le matériau brut

Les résultats obtenus pour l'analyse des hydrocarbures totaux (HCT C_{10} - C_{40}) sont inférieurs au seuil de quantification pour les dix (10) échantillons analysés. Les résultats obtenus pour l'analyse des hydrocarbures aromatiques monocycliques (CAV) et polycycliques (HAP) sont également inférieurs aux seuils de quantification(<0,1 mg/kg_{MS} par substance pour les CAV et <0,05 mg/kg_{MS} par substance pour les HAP) pour les dix (10) échantillons analysés. De même, les résultats obtenus pour l'analyse des polychlorobiphényles sont inférieurs au seuil de quantification (<0,01 mg/kg_{MS} par substance) pour les dix (10) échantillons analysés.

■ Résultats obtenus sur la fraction solubilisée

▶ Identification des dépassements constatés sur la fraction solubilisée

Des dépassements de la valeur limite fixée par l'arrêté du 12 décembre 2014 à 10 mg/kg_{MS} pour les fluorures ont été relevés sur le matériau brut pour trois (3) des dix (10) échantillons analysés. Il s'agit des échantillons COMP ST4-5.N1, ST7.0 et COMP ST9-10.N1, qui présentent des teneurs en fluorures sur la fraction solubilisée comprises entre 11 et 16 mg/kg_{MS}.

Aucun autre dépassement des valeurs limites fixées par l'arrêté du 12 décembre 2014 n'a été constaté sur la fraction solubilisée pour les dix (10) échantillons analysés.

Autres résultats obtenus sur la fraction solubilisée

Les résultats obtenus pour les fluorures sont compris entre 3 et 9 mg/kg_{MS} pour les sept (7) échantillons qui ne présentent pas de dépassement pour ce paramètre. Les résultats obtenus pour l'analyse des chlorures sont inférieurs au seuil de quantification (<100 mg/kg_{MS}) pour les dix (10) échantillons analysés. Les résultats obtenus pour l'analyse des sulfates sont inférieurs au seuil de quantification pour sept (7) des dix (10) échantillons analysés (<100 mg/kg_{MS}) et compris entre 170 et 310 mg/kg_{MS} pour les trois (3) échantillons COMP ST1-2-3.N1, Comp ST1-2-3.N2 et COMP ST4-5.N1; ces valeurs de concentration restent donc très en deçà de la valeur limite fixée par l'arrêté du 12 décembre 2014 à 1 000 mg/kg_{MS} pour les sulfates sur la fraction solubilisée.

Les éléments métalliques sont très peu lixiviables. En effet, les résultats obtenus pour l'antimoine (Sb), le cadmium (Cd), le chrome (Cr), le cuivre (Cu), le mercure (Hg), le molybdène (Mo), le nickel (Ni), le plomb (Pb), le sélénium (Se) et le zinc (Zn) sont inférieurs aux seuils de quantification pour les dix (10) échantillons analysés. Les résultats obtenus pour l'arsenic (As), supérieurs au seuil de quantification pour les dix (10) échantillons analysés, sont compris entre 0,05 et 0,43 mg/kg_{MS} et restent donc inférieurs à la valeur limite fixée pour cet élément à 0,5 mg/kg_{MS} par l'arrêté du 12 décembre 2014. Les résultats obtenus pour le baryum sont inférieurs au seuil de quantification pour sept (7) des dix (10) échantillons analysés; les résultats obtenus pour les trois (3) échantillons COMP ST1-2-3.N1, COMP ST4-5-6-7.N2 et COMP ST 15-16-17.N1, compris entre 0,08 et 0,13 mg/kg_{MS}, restent très en deçà de la valeur limite fixée pour cet élément à 20 mg/kg_{MS} par l'arrêté du 12 décembre 2014.

Les résultats obtenus pour l'indice phénol sont inférieurs au seuil de quantification $(<0,1~mg/kg_{MS})$ pour les dix (10) échantillons analysés.

Les résultats obtenus pour le carbone organique total (COT) sur éluât sont compris entre 12 et 39 mg/kg_{MS} pour les dix (10) échantillons analysés et sont donc très nettement inférieurs à la valeur limite fixée par l'arrêté du 12 décembre 2014 à 500 mg/kg_{MS}.

Les résultats obtenus pour la fraction soluble sont inférieurs au seuil de quantification (<1 000 mg/kg_{MS}) pour les dix (10) échantillons analysés.

Les résultats de cette caractérisation montrent que parmi les dix (10) échantillons analysés, sept (7) échantillons peuvent être considérés comme représentatifs de matériaux inertes.

Les trois (3) autres échantillons analysés (COMP ST4-5.N1, ST7.0 et COMP ST9-10.N1), représentatifs du premier horizon de sol recoupé au droit de l'emplacement des futures tribunes Est et Sud, présentent un dépassement de la valeur limite fixée par l'arrêté du 12 décembre 2014 pour les fluorures ; ils ne peuvent donc pas être considérés comme représentatifs de matériaux inertes. Les dépassements observés restant inférieurs à trois fois la valeur limite (30 mg/kg_{MS}), ils peuvent en revanche être assimilés à des matériaux « inertes + ».

Tableau 7 : Résultats obtenus pour la caractérisation des échantillons COMP ST1-2-3.N1, COMP ST1-2-3.N2, COMP ST4-5.N1, ST7.0 et COMP ST4-5-6-7.N2 vis-à-vis des critères définissant les matériaux inertes sur le matériau brut (Arrêté du 12 décembre 2014)

Identification de l'échantillon		COMP ST1-2-3.N1	COMP ST1-2-3.N2	COMP ST4-5.N1	ST7.0	COMP ST4-5-6-7.N2	
Date de prélèvement		19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	
Profondeur	cm	0-120	50-300	0-190	0-180	180-300	
Lithologie		Terre végétale argileuse marron	Sables volcaniques grossiers noirs	Argiles noires	Cendres volcaniques beiges à blanches	Sables volcaniques grossiers noirs humides	Valeurs limites définies par l'arrêté du 12 décembre 2014 ⁽ⁱ⁾
Indices organoleptiques		RAS	RAS	RAS	RAS	RAS	
Composés organiques volatils (Mesure PID)	ppm	<0,1	<0,1	<0,1	<0,1	<0,1	
Résultats sur matériau brut							
Hydrocarbures totaux - HCT C ₁₀ -C ₄₀							
Hydrocarbures totaux (C ₁₀ -C ₁₂)	mg/kg _{MS}	<20	<20	<20	<20	<20	
Hydrocarbures totaux (C ₁₂ -C ₁₆)	mg/kg _{MS}	<20	<20	<20	<20	<20	
Hydrocarbures totaux (C ₁₆ -C ₂₁)	mg/kg _{MS}	<20	<20	<20	<20	<20	
Hydrocarbures totaux (C ₂₁ -C ₃₅)	mg/kg _{MS}	<20	<20	<20	<20	<20	
Hydrocarbures totaux (C ₃₅ -C ₄₀)	mg/kg _{MS}	<20	<20	<20	<20	<20	
Indice hydrocarbures totaux (HCT C ₁₀ -C ₄₀)	mg/kg _{MS}	<20	<20	<20	<20	<20	500
Hydrocarbures aromatiques							
monocycliques - CAV Benzène *	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Toluène (méthylbenzène) *	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
o-Ethyltoluène (2-éthyl méthylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
m-, p-Ethyltoluène (3 et 4-éthyl méthylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Ethyltoluènes totaux	mg/kg _{MS}	<0,2	<0,2	<0,2	<0,2	<0,2	
o-Xylène (1,2-Diméthylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
m,p-Xylène (1,3 et 1,4-Diméthylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Xylènes totaux *	mg/kg _{MS}	<0,2	<0,2	<0,2	<0,2	<0,2	
Pseudocumène (1,2,4-Triméthylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Mésitylène (1,3,5-Triméthylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Ethylbenzène *	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Cumène (isopropylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Somme des BTEX (*)	mg/kg _{MS}	<0,5	<0,5	<0,5	<0,5	<0,5	
Somme des CAV	mg/kg _{MS}	<1,0	<1,0	<1,0	<1,0	<1,0	6
Hydrocarbures aromatiques							
polycycliques - HAP Naphtalène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Acénaphtylène	mg/kg MS	<0,05	<0,05	<0,05	<0,05	<0,05	
Acénaphtène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Fluorène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Phénanthrène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Anthracène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Fluoranthène *	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Pyrène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Benzo(a)anthracène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Chrysène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Benzo(b)fluoranthène *°	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Benzo(k)fluoranthène *°	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Benzo(a)pyrène *	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Dibenzo(ah)anthracène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Benzo(ghi)pérylène *° Indéno(123-cd)pyrène *°	mg/kg _{MS} mg/kg _{MS}	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	<0,05 <0,05	
Somme des 4 HAP (°)	mg/kg _{MS}	<0,03	<0,03	<0,05	<0,03	<0,03	
Somme des 4 HAP (*)	mg/kg _{MS}	<0,30	<0,30	<0,30	<0,30	<0,30	
Somme des 16 HAP	mg/kg _{MS}	<0,80	<0,80	<0,80	<0,80	<0,80	50
Polychlorobiphényles - PCB							
PCB n° 28	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
PCB n° 52	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
PCB n° 101	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
PCB n° 118	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
PCB n° 138	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
PCB n° 153	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
PCB n° 180	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
Somme des 7 PCB	mg/kg _{MS}	<0,07	<0,07	<0,07	<0,07	<0,07	1
Carbone organique total - COT	% mass MS	6,9	4,9	8,9	3,8	7,4	3 ⁽ⁱⁱ⁾
		-,0		3,0	-,0	.,•	

(ii) Une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg soit respectée pour le COT sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

RAS : rien à signaler

Légende :

> valeurs limites de l'arrêté du 12 décembre 2014 (i)

Les bordereaux d'analyse sont présentés en Annexe VI.

Tableau 8 : Résultats obtenus pour la caractérisation des échantillons COMP ST9-10.N1, COMP ST8-9-10.N2, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1 et COMP ST19-20.N1 vis-à-vis des critères définissant les matériaux inertes sur le matériau brut (Arrêté du 12 décembre 2014)

Identification de l'échantillon		COMP	COMP	COMP	COMP	COMP	
Date de prélèvement		ST9-10.N1 19/06/2019	ST8-9-10.N2 19/06/2019	ST11-12-13-14.N1 19/06/2019	ST15-16-17.N1 19/06/2019	ST19-20.N1 19/06/2019	
Profondeur	cm	0-180	160-300	0-170	0-180	0-190	
Lithologie		Argiles marron	Sables volcaniques grossiers noirs humides	Sables fins légèrement argileux marron en mélange avec des cendres volcaniques très fines grises	Sables volcaniques fins noirs	Sables très fins marron	Valeurs limites définies par l'arrêté du 12 décembre 2014 ⁽ⁱ⁾
Indices organoleptiques		RAS	RAS	RAS	RAS	RAS	
Composés organiques volatils	ppm	<0,1	<0,1	<0,1	<0,1	<0,1	
(Mesure PID)							
Résultats sur matériau brut							
Hydrocarbures totaux - HCT C ₁₀ -C ₄₀							
Hydrocarbures totaux (C ₁₀ -C ₁₂)	mg/kg _{MS}	<20	<20	<20	<20	<20	
Hydrocarbures totaux (C ₁₂ -C ₁₆)	mg/kg _{MS}	<20	<20	<20	<20	<20	
Hydrocarbures totaux (C ₁₆ -C ₂₁)	mg/kg _{MS}	<20	<20	<20	<20	<20	
Hydrocarbures totaux (C ₂₁ -C ₃₅)	mg/kg _{MS}	<20	<20	<20	<20	<20	
Hydrocarbures totaux (C ₃₅ -C ₄₀)	mg/kg _{MS}	<20	<20	<20	<20	<20	
Indice hydrocarbures totaux (HCT C ₁₀ -C ₄₀)	mg/kg _{MS}	<20	<20	<20	<20	<20	500
Hydrocarbures aromatiques							
monocycliques - CAV Benzène *	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Toluène (méthylbenzène) *	mg/kg MS	<0,1	<0,1	<0,1	<0,1	<0,1	
o-Ethyltoluène (2-éthyl méthylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
m-, p-Ethyltoluène (3 et 4-éthyl méthylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Ethyltoluènes totaux	mg/kg _{MS}	<0,2	<0,2	<0,2	<0,2	<0,2	
o-Xylène (1,2-Diméthylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
m,p-Xylène (1,3 et 1,4-Diméthylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Xylènes totaux *	mg/kg _{MS}	<0,2	<0,2	<0,2	<0,2	<0,2	
Pseudocumène (1,2,4-Triméthylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Mésitylène (1,3,5-Triméthylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Ethylbenzène *	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Cumène (isopropylbenzène)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	
Somme des BTEX (*)	mg/kg _{MS}	<0,5	<0,5	<0,5	<0,5	<0,5	
Somme des CAV	mg/kg _{MS}	<1,0	<1,0	<1,0	<1,0	<1,0	6
Hydrocarbures aromatiques polycycliques - HAP							
Naphtalène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Acénaphtylène	mg/kg _{MS}	<0,05	<0,05		<0,05	<0,05	
Acénaphtène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Fluorène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Phénanthrène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Anthracène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Fluoranthène *	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Pyrène	mg/kg _{MS}	<0,05	<0,05		<0,05	<0,05	
Benzo(a)anthracène	mg/kg _{MS}	<0,05	<0,05		<0,05	<0,05	
Chrysène	mg/kg _{MS}	<0,05	<0,05		<0,05	<0,05	
Benzo(b)fluoranthène *° Benzo(k)fluoranthène *°	mg/kg _{MS} mg/kg _{MS}	<0,05	<0,05 <0,05		<0,05 <0,05	<0,05	
Benzo(a)pyrène *	mg/kg _{MS} mg/kg _{MS}	<0,05 <0,05	<0,05		<0,05	<0,05 <0,05	
Dibenzo(ah)anthracène	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Benzo(ghi)pérylène *°	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	
Indéno(123-cd)pyrène *°	mg/kg _{MS}	<0,05	<0,05		<0,05	<0,05	
Somme des 4 HAP (°)	mg/kg _{MS}	<0,20	<0,20	<0,20	<0,20	<0,20	
Somme des 6 HAP (*)	mg/kg _{MS}	<0,30	<0,30		<0,30	<0,30	
Somme des 16 HAP	mg/kg _{MS}	<0,80	<0,80		<0,80	<0,80	50
Polychlorobiphényles - PCB							
PCB n° 28	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
PCB n° 52	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
PCB n° 101	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
PCB n° 118	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
PCB n° 138	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
PCB n° 153	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
PCB n° 180	mg/kg _{MS}	<0,01	<0,01	<0,01	<0,01	<0,01	
Somme des 7 PCB	mg/kg _{MS}	<0,07	<0,07	<0,07	<0,07	<0,07	1
Carbone organique total - COT	% mass MS	8,0	2,5	2,9	4,4	3,6	3 ⁽ⁱⁱ⁾

(ii) Une valeur limite plus élevée peut être admise, à condition que la valeur limite de 500 mg/kg soit respectée pour le COT sur éluat, soit au pH du sol, soit pour un pH situé entre 7,5 et 8,0.

RAS : rien à signaler

Légende :

> valeurs limites de l'arrêté du 12 décembre 2014 (i)

E Les bordereaux d'analyse sont présentés en Annexe VI.

Tableau 9 : Résultats obtenus pour la caractérisation des échantillons COMP ST1-2-3.N1, COMP ST1-2-3.N2, COMP ST4-5.N1, ST7.0 et COMP ST4-5-6-7.N2 vis-à-vis des critères définissant les matériaux inertes sur la fraction solubilisée (Arrêté du 12 décembre 2014)

Identification de l'échantillon		COMP ST1-2-3.N1	COMP ST1-2-3.N2	COMP ST4-5.N1	ST7.0	COMP ST4-5-6-7.N2	
Date de prélèvement		19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	
Profondeur	cm	0-120	50-300	0-190	0-180	180-300	
Lithologie		Terre végétale argileuse marron	Sables volcaniques grossiers noirs	Argiles noires	Cendres volcaniques beiges à blanches	Sables volcaniques grossiers noirs humides	Valeurs limites définies par l'arrêté du 12 décembre 2014 ⁽¹⁾
Indices organoleptiques		RAS	RAS	RAS	RAS	RAS	
Composés organiques volatils (Mesure PID)	ppm	<0,1	<0,1	<0,1	<0,1	<0,1	
Paramètres de lixiviation							
Paramètres globaux							
Masse totale de l'échantillon	g	69	100	74	76	69	
Masse de la prise d'essai	g	20	20	21	20	21	
Refus > 4 mm	g	9,8	22	34	2,4	11	
Matière sèche	% mass MB	82,8	85,5	75,8	88,3	82,6	
pH		8,5	9,3	8,4	8,8	8,3C	
Conductivité (25°C)	μS/cm	130	85	130	77	25	
Résultats sur fraction solubilisée							
Cations, anions et éléments non métalliques							
Fluorures (F ⁻)	mg/kg _{MS}	8	4	12	11	3	10
Chlorures (Cl ⁻)	mg/kg _{MS}	<100	<100	<100	<100	<100	800 ^(v)
Sulfates (SO ₄ ²⁻)	mg/kg _{MS}	260	170	310	<100	<100	1 000 (iii) (v)
Eléments métalliques							
Antimoine (Sb)	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	0,06
Arsenic (As)	mg/kg _{MS}	0,05	0,07	0,14	0,16	0,22	0,5
Baryum (Ba)	mg/kg _{MS}	0,08	<0,05	<0,05	<0,05	0,12	20
Cadmium (Cd)	mg/kg _{MS}	<0,015	<0,015	<0,015	<0,015	<0,015	0,04
Chrome total (Cr)	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	0,5
Cuivre (Cu)	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	2
Mercure (Hg)	mg/kg _{MS}	<0,001	<0,001	<0,001	<0,001	<0,001	0,01
Molybdène (Mo)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	0,5
Nickel (Ni)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	0,4
Plomb (Pb)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	0,5
Sélénium (Se)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	0,1
Zinc (Zn)	mg/kg _{MS}	<0,5	<0,5	<0,5	<0,5	<0,5	4
Indice Phénol	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	1
Carbone organique total - COT	mg/kg _{MS}	35	17	20	24	12	500 (iv)
Fraction soluble	mg/kg _{MS}	<1 000	<1 000	<1 000	<1 000	<1 000	4 000 ^(v)

(iii) Si le déchet ne respecte pas cette valeur pour les sulfates, il peut être encore jugé conforme aux critères d'admission si la lixiviation ne dépasse pas les valeurs suivantes :

1 500 mg/l à un ratio L/S=0,1 l/kg et 6 000 mg/kg de matière sèche à un ratio L/S=10 l/kg. Il est nécessaire d'utiliser l'essai de percolation NF CEN/TS 14405

pour déterminer la valeur lorsque L/S=0,1 l/kg dans les conditions d'équilibre initial ; la valeur correspondant à L/S=10 l/kg peut être déterminée

par un essai de lixiviation NF EN 12457-2 ou par un essai de percolation NF CEN/TS 14405 dans des conditions approchant l'équilibre local.

(iv) Si le déchet ne satisfait pas la valeur limite indiquée pour le carbone organique total sur éluat à sa propre valeur de pH, il peut aussi faire l'objet d'un essai de lixiviation NF EN 12457-2 avec un pH compris entre 7,5 et 8,0. Le déchet peut être jugé conforme aux critères d'admission pour le carbone organique total sur éluat si le résultat de cette détermination ne dépasse pas 500 mg/kg de matière sèche.

(v) Si le déchet ne respecte pas au moins une des valeurs fixées pour les chlorures, les sulfates ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission s'il respecte soit les valeurs associées aux chlorures et aux sulfates, soit celle associée à la fraction soluble.

RAS : rien à signaler

Légende :

> valeurs limites de l'arrêté du 12 décembre 2014 (i)

Les bordereaux d'analyse sont présentés en Annexe VI.

Tableau 10 : Résultats obtenus pour la caractérisation des échantillons COMP ST9-10.N1, COMP ST8-9-10.N2, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1 et COMP ST19-20.N1 vis-à-vis des critères définissant les matériaux inertes sur la fraction solubilisée (Arrêté du 12 décembre 2014)

Identification de l'échantillon		COMP	COMP	COMP	COMP	COMP	
Date de prélèvement		ST9-10.N1 19/06/2019	ST8-9-10.N2 19/06/2019	ST11-12-13-14.N1 19/06/2019	ST15-16-17.N1 19/06/2019	ST19-20.N1 19/06/2019	
Profondeur	cm	0-180	160-300	0-170	0-180	0-190	
Lithologie		Argiles marron	Sables volcaniques grossiers noirs humides	Sables fins légèrement argileux marron en mélange avec des cendres volcaniques très fines grises	Sables volcaniques fins noirs	Sables très fins marron	Valeurs limites définies par l'arrêté du 12 décembre 2014 ⁽ⁱ⁾
Indices organoleptiques		RAS	RAS	RAS	RAS	RAS	
Composés organiques volatils (Mesure PID)	ppm	<0,1	<0,1	<0,1	<0,1	<0,1	
Paramètres de lixiviation							
Paramètres globaux							
Masse totale de l'échantillon	g	80	70	80	75	81	
Masse de la prise d'essai	g	21	20	21	21	21	
Refus > 4 mm	g	38	10	12	5,0	17	
Matière sèche	% mass MB	77,2	79,5	85,0	85,0	86,0	
рН		8,5	8,2	8,6	8,3	8,4	
Conductivité (25°C)	μS/cm	120	29	83	74	56	
Résultats sur fraction solubilisée							
Cations, anions et éléments non métalliques							
Fluorures (F ⁻)	mg/kg _{MS}	16	3	9	7	7	10
Chlorures (Cl ⁻)	mg/kg _{MS}	<100	<100	<100	<100	<100	800 ^(v)
Sulfates (SO ₄ ²⁻)	mg/kg _{MS}	<100	<100	<100	<100	<100	1 000 (iii) (v)
Eléments métalliques							
Antimoine (Sb)	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	0,06
Arsenic (As)	mg/kg _{MS}	0,43	0,41	0,2	0,07	0,15	0,5
Baryum (Ba)	mg/kg _{MS}	<0,05	<0,05	<0,05	0,13	<0,05	20
Cadmium (Cd)	mg/kg _{MS}	<0,015	<0,015	<0,015	<0,015	<0,015	0,04
Chrome total (Cr)	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	0,5
Cuivre (Cu)	mg/kg _{MS}	<0,05	<0,05	<0,05	<0,05	<0,05	2
Mercure (Hg)	mg/kg _{MS}	<0,001	<0,001	<0,001	<0,001	<0,001	0,01
Molybdène (Mo)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	0,5
Nickel (Ni)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	0,4
Plomb (Pb)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	0,5
Sélénium (Se)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	0,1
Zinc (Zn)	mg/kg _{MS}	<0,5	<0,5	<0,5	<0,5	<0,5	4
Indice Phénol	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	1
Carbone organique total - COT	mg/kg _{MS}	27	15	25	39	22	500 ^(iv)
Fraction soluble	mg/kg _{MS}	<1 000	<1 000	<1 000	<1 000	<1 000	4 000 ^(v)
•	•						•

(iii) Si le déchet ne respecte pas cette valeur pour les sulfates, il peut être encore jugé conforme aux critères d'admission si la lixiviation ne dépasse pas les valeurs suivantes :

1 500 mg/l à un ratio L/S=0,1 l/kg et 6 000 mg/kg de matière sèche à un ratio L/S=10 l/kg. Il est nécessaire d'utiliser l'essai de percolation NF CEN/TS 14405
pour déterminer la valeur lorsque L/S=0,1 l/kg dans les conditions d'équilibre initial ; la valeur correspondant à L/S=10 l/kg peut être déterminée
par un essai de lixiviation NF EN 12457-2 ou par un essai de percolation NF CEN/TS 14405 dans des conditions approchant l'équilibre local.

(iv) Si le déchet ne satisfait pas la valeur limite indiquée pour le carbone organique total sur éluat à sa propre valeur de pH, il peut aussi faire l'objet d'un essai de lixiviation NF EN 12457-2 avec un pH compris entre 7,5 et 8,0. Le déchet peut être jugé conforme aux critères d'admission pour le carbone organique total sur éluat si le résultat de cette détermination ne dépasse pas 500 mg/kg de matière sèche.

(v) Si le déchet ne respecte pas au moins une des valeurs fixées pour les chlorures, les sulfates ou la fraction soluble, le déchet peut être encore jugé conforme aux critères d'admission s'il respecte soit les valeurs associées aux chlorures et aux sulfates, soit celle associée à la fraction soluble.

RAS : rien à signaler

Légende

> valeurs limites de l'arrêté du 12 décembre 2014 (i)

Les bordereaux d'analyse sont présentés en Annexe VI.

V.2.2. Résultats obtenus pour l'analyse sur le matériau brut des hydrocarbures totaux et des éléments métalliques effectuée sur les sols de surface

Dix (10) échantillons unitaires (ST2.0, ST4.0, ST6.0, ST8.0, ST10.25, ST12.0, ST14.0, ST15.20, ST17.0 et ST18.0), représentatifs du premier horizon de sol recoupé par dix (10) des vingt (20) sondages réalisés, ont fait l'objet d'une analyse sur le matériau brut des hydrocarbures totaux (HCT C_{10} - C_{40}) et de douze éléments métalliques couramment recherchés dans les sols (Sb, As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, Zn).

Les résultats sont présentés dans les Tableaux 11 à 13 et discutés paramètre par paramètre ci-après.

■ Analyse quantitative des hydrocarbures totaux (HCT C_{10} - C_{40})

Les résultats obtenus pour l'analyse des hydrocarbures totaux (HCT C_{10} - C_{40}) sont présentés dans le Tableau 11 ci-après et discutés ci-dessous.

Ils sont inférieurs au seuil de quantification ($<20 \text{ mg/kg}_{MS}$) pour les dix (10) échantillons analysés.

Ces résultats traduisent donc l'absence de tout impact de ces substances sur les sols de surface recoupés par les sondages ST2, ST4, ST6, ST8, ST10, ST12, ST14, ST5, ST17 et ST18.

 Analyse quantitative de douze éléments métalliques sur le matériau brut (Sb, As, Ba, Cd, Cr, Cu, Hg, Mo, Ni, Pb, Se, Zn)

Cette analyse comprend la recherche et la quantification sur le matériau brut de douze éléments métalliques couramment rencontrés dans les sols : antimoine, arsenic, baryum, cadmium, chrome, cuivre, mercure, molybdène, nickel, plomb, sélénium et zinc. Les résultats obtenus pour cette analyse sont présentés dans les Tableaux 12 et 13 et discutés élément par élément ci-après.

▲ Antimoine (Sb)

Les résultats obtenus pour l'analyse de l'élément antimoine sur le matériau brut sont inférieurs au seuil de quantification (<10 mg/kg_{MS}) pour les dix (10) échantillons de sol analysés. Ces résultats ne traduisent aucune anomalie particulière vis-à-vis de cet élément.

▲ Arsenic (As)

Les valeurs de concentration mesurées sur neuf (9) des dix (10) échantillons de sol analysés pour l'élément arsenic sont comprises entre 8 et 33 mg/kg_{MS}, le résultat obtenu pour l'échantillon ST18.0 étant inférieur au seuil de quantification (<2 mg/kg_{MS}). Les valeurs médiane (10 mg/kg_{MS}) et moyenne (13,2 \pm 5,2 mg/kg_{MS}) sont proches, traduisant l'absence de valeurs anormalement dispersées. Les teneurs mesurées, particulièrement faibles pour la région, ne traduisent aucune anomalie particulière vis-à-vis de cet élément peuvent être considérées comme représentatives du fond géochimique local.

▶ Baryum (Ba)

Les valeurs de concentration mesurées sur les dix (10) échantillons de sol analysés pour l'élément baryum sont comprises entre 7 et 290 mg/kg_{MS}. Les valeurs médiane (190 mg/kg_{MS}) et moyenne (176,7 \pm 48,2 mg/kg_{MS}) sont légèrement éloignées du fait de la teneur particulièrement faible mesurée sur l'échantillon ST18.0. Les teneurs mesurées ne traduisent aucune anomalie particulière vis-à-vis de cet élément et peuvent être considérées comme représentatives du fond géochimique local.

▲ Cadmium (Cd)

Les résultats obtenus pour l'analyse de l'élément cadmium sur le matériau brut sont inférieurs au seuil de quantification (<0,5 mg/kg_{MS}) pour les dix (10) échantillons de sol analysés. Ces résultats ne traduisent aucune anomalie particulière vis-à-vis de cet élément.

№ Chrome (Cr)

Les valeurs de concentration mesurées sur les dix (10) échantillons de sol analysés pour l'élément chrome sont comprises entre 2 et 29 mg/kg_{MS}. Les valeurs médiane (15,5 mg/kg_{MS}) et moyenne (15,2 ± 4,2 mg/kg_{MS}) sont proches, traduisant l'absence de valeurs anormalement dispersées. Les valeurs de concentration mesurées sur les dix (10) échantillons analysés sont inférieures à la teneur médiane en chrome définie pour les sols français dans le cadre du programme INRA-ASPITET (59,50 mg/kg_{MS}). Les teneurs mesurées ne traduisent aucune anomalie particulière vis-à-vis de cet élément et peuvent être considérées comme représentatives du fond géochimique local.

Les valeurs de concentration mesurées sur les dix (10) échantillons de sol analysés pour l'élément cuivre sont comprises entre 2 et 23 mg/kg_{MS}. Les valeurs médiane (12,5 mg/kg_{MS}) et moyenne (12,7 \pm 3,3 mg/kg_{MS}) sont proches, traduisant l'absence de valeurs anormalement dispersées. Les valeurs de concentration mesurées sur trois (3) des dix (10) échantillons analysés sont légèrement supérieures à la teneur médiane en cuivre définie pour les sols français dans le cadre du programme INRA-ASPITET (13,50 mg/kg_{MS}) tout en restant du même ordre de grandeur. Les teneurs mesurées ne traduisent aucune anomalie particulière vis-à-vis de cet élément et peuvent être considérées comme représentatives du fond géochimique local.

Les résultats obtenus pour l'analyse de l'élément mercure sur le matériau brut sont inférieurs au seuil de quantification (<0,1 mg/kg_{MS}) pour les dix (10) échantillons de sol analysés. Ces résultats ne traduisent aucune anomalie particulière vis-à-vis de cet élément.

Les résultats obtenus pour l'analyse de l'élément molybdène sur le matériau brut sont inférieurs au seuil de quantification (<10 mg/kg_{MS}) pour les dix (10) échantillons de sol analysés. Ces résultats ne traduisent aucune anomalie particulière vis-à-vis de cet élément.

■ Nickel (Ni)

Les valeurs de concentration mesurées sur neuf (9) des dix (10) échantillons de sol analysés pour l'élément nickel sont comprises entre 10 et 29 mg/kg_{MS}, le résultat obtenu pour l'échantillon ST18.0 étant inférieur au seuil de quantification (<1 mg/kg_{MS}). Les valeurs médiane (15 mg/kg_{MS}) et moyenne (15,6 \pm 3,6 mg/kg_{MS}) sont proches, traduisant l'absence de valeurs anormalement dispersées. Les valeurs de concentration mesurées sur huit (8) des neuf (9) échantillons présentant un résultat supérieur au seuil de quantification sont inférieures à la teneur médiane en nickel définie pour les sols français dans le cadre du programme INRA-ASPITET (27,20 mg/kg_{MS}); seul l'échantillon ST17.0 présente une teneur à peine supérieure à cette valeur. Les teneurs mesurées ne traduisent aucune anomalie particulière vis-à-vis de cet élément et peuvent être considérées comme représentatives du fond géochimique local.

▶ Plomb (Pb)

Les résultats obtenus pour l'analyse de l'élément plomb sur le matériau brut sont inférieurs au seuil de quantification (<10 mg/kg_{MS}) pour huit (8) des dix (10) échantillons de sol analysés. Seuls les échantillons ST8.0 et ST17.0 présentent des résultats à peine supérieurs au seuil de quantification (respectivement 14 et 13 mg/kg_{MS}), qui sont très inférieurs à la teneur médiane en plomb définie pour les sols français dans le cadre du programme

INRA-ASPITET (31,60 mg/kg_{MS}). Ces résultats ne traduisent aucune anomalie particulière visà-vis de cet élément.

Les résultats obtenus pour l'analyse de l'élément sélénium sur le matériau brut sont inférieurs au seuil de quantification (<5 mg/kg_{MS}) pour les dix (10) échantillons de sol analysés. Ces résultats ne traduisent aucune anomalie particulière vis-à-vis de cet élément.

Les valeurs de concentration mesurées sur les dix (10) échantillons de sol analysés pour l'élément zinc sont comprises entre 8 et 120 mg/kg_{MS}. Les valeurs médiane (80 mg/kg_{MS}) et moyenne (76,3 \pm 17,6 mg/kg_{MS}) sont légèrement éloignées du fait de la teneur particulièrement faible mesurée sur l'échantillon ST18.0. Les valeurs de concentration mesurées sur sept (7) des dix (10) échantillons analysés sont légèrement supérieures à la teneur médiane en zinc définie pour les sols français dans le cadre du programme INRA-ASPITET (72,00 mg/kg_{MS}), tout en restant du même ordre de grandeur. Les teneurs mesurées ne traduisent aucune anomalie particulière vis-à-vis de cet élément et peuvent être considérées comme représentatives du fond géochimique local.

Les résultats obtenus pour l'analyse des éléments métalliques effectuée sur le matériau brut montrent l'absence de toute anomalie, les teneurs mesurées étant parfaitement représentatives du fond géochimique local.

Tableau 11 : Résultats obtenus pour l'analyse sur le matériau brut des hydrocarbures totaux (HCT C₁₀-C₄₀) effectuée sur les dix (10) échantillons représentatifs du premier horizon de sol recoupé au droit du site d'intérêt par dix des vingt sondages réalisés

Identification de l'échantillon		ST2.0	ST4.0	ST6.0	ST8.0	ST10.25	ST12.0	ST14.0	ST15.20	ST17.0	ST18.0
Date de prélèvement		19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019
Profondeur	cm	0-60	0-190	0-180	0-160	25-180	0-150	0-160	20-180	0-150	0-150
Lithologie		Terre végétale argileuse marron	Argiles noires	Sables volcaniques fins noirs à passées marron	Sables argileux marron à noirs	Argiles marron foncé compactes	Sables fins marron	Sables fins légèrement argileux marron en mélange avec des cendres volcaniques très fines grises	Sables volcaniques fins noirs	Sables volcaniques fins noirs légèrement argileux sur les 50 premiers cm	Sables argileux marron
Indices organoleptiques		RAS	RAS	RAS	RAS	RAS	RAS	RAS	RAS	RAS	RAS
Composés organiques volatils (Mesure PID in-situ)	ppm	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Matière sèche	%	81,9	78,2	76,4	83,5	75,1	86,4	78,2	87,1	88,4	88,5
Hydrocarbures totaux - HCT C ₁₀ -C ₄₀											
Hydrocarbures totaux (C ₁₀ -C ₁₂)	mg/kg _{MS}	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Hydrocarbures totaux (C ₁₂ -C ₁₆)	mg/kg _{MS}	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Hydrocarbures totaux (C ₁₆ -C ₂₁)	mg/kg _{MS}	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Hydrocarbures totaux (C ₂₁ -C ₃₅)	mg/kg _{MS}	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Hydrocarbures totaux (C ₃₅ -C ₄₀)	mg/kg _{MS}	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
Indice hydrocarbures totaux (HCT C 10 -C 40)	mg/kg _{MS}	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20

RAS : rien à signaler

Légende

> valeurs limites de l'arrêté du 12 décembre 2014

Les bordereaux d'analyse sont présentés en Annexe VI.

Tableau 12 : Résultats obtenus pour l'analyse sur le matériau brut des éléments traces métalliques (ETM) effectuée sur les dix (10) échantillons représentatifs du premier horizon de sol recoupé au droit du site d'intérêt par dix des vingt sondages réalisés

Identification de l'échantillon		ST2.0	ST4.0	ST6.0	ST8.0	ST10.25	ST12.0	ST14.0	ST15.20	ST17.0	ST18.0	
Date de prélèvement		19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	19/06/2019	
Profondeur	cm	0-60	0-190	0-180	0-160	25-180	0-150	0-160	20-180	0-150	0-150	Teneurs
Lithologie		Terre végétale argileuse marron	Argiles noires	Sables volcaniques fins noirs à passées marron	Sables argileux marron à noirs	Argiles marron foncé compactes		Sables fins légèrement argileux marron en mélange avec des cendres volcaniques très fines grises	Sables volcaniques fins noirs	Sables volcaniques fins noirs légèrement argileux sur les 50 premiers cm	Sables argileux marron	médianes en ETM dans les sols français *
Eléments métalliques												
Antimoine (Sb)	mg/kg _{MS}	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-
Arsenic (As)	mg/kg _{MS}	10	8	8	33	11	16	10	8	15	<2	-
Baryum (Ba)	mg/kg _{MS}	240	180	140	230	200	200	160	120	290	7	-
Cadmium (Cd)	mg/kg _{MS}	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	<0,5	0,19
Chrome total (Cr)	mg/kg _{MS}	16	17	10	18	14	18	13	15	29	2	59,50
Cuivre (Cu)	mg/kg _{MS}	17	13	10	15	13	12	12	10	23	2	13,50
Mercure (Hg)	mg/kg _{MS}	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1	-
Molybdène (Mo)	mg/kg _{MS}	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	-
Nickel (Ni)	mg/kg _{MS}	16	17	10	15	12	15	12	14	29	<1	27,20
Plomb (Pb)	mg/kg _{MS}	<10	<10	<10	14	<10	<10	<10	<10	13	<10	31,60
Sélénium (Se)	mg/kg _{MS}	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	-
Zinc (Zn)	mg/kg _{MS}	89	86	63	83	76	89	77	72	120	8	72

^{*} Données issues du programme INRA-ASPITET ; population générale de 1874 échantillons (horizons de surface et horizons profonds, sols agricoles et forestiers)

Légende :

> Valeurs médianes des teneurs en ETM dans les sols français

Les bordereaux d'analyse sont présentés en Annexe VI.

Tableau 13: Valeurs médianes et moyennes des concentrations en éléments traces métalliques (ETM) mesurées sur le matériau brut pour les dix (10) échantillons de sol analysés

		Nbre	Nbre			Concen	tration			Teneurs médianes
Paramètre	Unités	échantillons	valeurs > LQ	Valeur minimale	Valeur maximale	Médiane	Moyenne	Ecart type	en ETM dans les sols français *	
Eléments métalliques										
Antimoine (Sb)	mg/kg _{MS}	10	0	<lq< td=""><td><lq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></lq<></td></lq<>	<lq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></lq<>	-	-	-	-	-
Arsenic (As)	mg/kg _{MS}	10	9	<lq< td=""><td>33,0</td><td>10,0</td><td>13,2</td><td>8,0</td><td>5,2</td><td>-</td></lq<>	33,0	10,0	13,2	8,0	5,2	-
Baryum (Ba)	mg/kg _{MS}	10	10	7,0	290,0	190,0	176,7	77,8	48,2	-
Cadmium (Cd)	mg/kg _{MS}	10	0	<lq< td=""><td><lq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>0,19</td></lq<></td></lq<>	<lq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>0,19</td></lq<>	-	-	-	-	0,19
Chrome total (Cr)	mg/kg _{MS}	10	10	2,0	29,0	15,5	15,2	6,8	4,2	59,50
Cuivre (Cu)	mg/kg _{MS}	10	10	2,0	23,0	12,5	12,7	5,4	3,3	13,50
Mercure (Hg)	mg/kg _{MS}	10	0	<lq< td=""><td><lq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></lq<></td></lq<>	<lq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></lq<>	-	-	-	-	-
Molybdène (Mo)	mg/kg _{MS}	10	0	<lq< td=""><td><lq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></lq<></td></lq<>	<lq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></lq<>	-	-	-	-	-
Nickel (Ni)	mg/kg _{MS}	10	9	<lq< td=""><td>29,0</td><td>15,0</td><td>15,6</td><td>5,5</td><td>3,6</td><td>27,20</td></lq<>	29,0	15,0	15,6	5,5	3,6	27,20
Plomb (Pb)	mg/kg _{MS}	10	2	<lq< td=""><td>14,0</td><td>13,5</td><td>13,5</td><td>0,7</td><td>1,0</td><td>31,60</td></lq<>	14,0	13,5	13,5	0,7	1,0	31,60
Sélénium (Se)	mg/kg _{MS}	10	0	<lq< td=""><td><lq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></lq<></td></lq<>	<lq< td=""><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></lq<>	-	-	-	-	-
Zinc (Zn)	mg/kg _{MS}	10	10	8,0	120,0	80,0	76,3	28,3	17,6	72

^{*} Données issues du programme INRA-ASPITET ; population générale de 1874 échantillons (horizons de surface et horizons profonds, sols agricoles et forestiers)

LQ : limite de quantification

Légende :

> Valeurs médianes des teneurs en ETM dans les sols français

V.3. Discussion et interprétation des résultats

Les investigations de terrain montrent que les sols présents au droit du site d'intérêt sont très majoritairement constitués de sables plus ou moins grossiers d'origine volcanique (scories et cendres) confirmant les données documentaires disponibles sur ce secteur géographique.

La caractérisation approfondie des sols montre que la majorité des sols investigués peut être assimilée à des matériaux inertes. Il est toutefois précisé que les sols constitutifs du premier horizon recoupé au droit de l'emplacement des futures tribunes Est et Sud (sondages ST4, ST5, ST6, ST7, ST8, ST9 et ST10) ne peuvent pas être considérés comme inertes, mais doivent être assimilés à des matériaux « inertes + » compte tenu de leurs teneurs en fluorures sur la fraction solubilisée, qui dépassent la valeur limite fixée par l'arrêté du 12 décembre 2014 (10 mg/kg_{MS}) tout en restant inférieures à trois fois cette valeur limite (30 mg/kg_{MS}).

L'analyse des sols de surface montre par ailleurs l'absence de tout impact des molécules organiques recherchées (hydrocarbures aliphatiques et aromatiques, polychlorobiphényles), les résultats obtenus pour l'analyse de ces substances étant systématiquement inférieurs au seuil de quantification pour l'ensemble des échantillons analysés. De la même façon, aucune anomalie n'a été mise en évidence pour les éléments métalliques recherchés que cela soit en terme de contenu total (analyse sur le matériau brut) ou sur la fraction solubilisée. Les teneurs en éléments métalliques mesurées sur le matériau brut sont en effet parfaitement représentatives du fond géochimique local et les éléments métalliques sont très peu lixiviables, les résultats obtenus sur la fraction solubilisée étant très majoritairement inférieurs aux seuil de quantification.

VI. Conclusions

La présente étude consistait en la réalisation d'un diagnostic de pollution des sols dans le cadre du projet d'extension des tribunes du stade Gabriel Montpied, qui se situe sur la commune de Clermont-Ferrand (63100) au niveau du quartier de Champratel.

Les investigations de terrain ont consisté en la réalisation de vingt (20) sondages sur l'ensemble du site d'intérêt, dont dix (10) sur le pourtour immédiat du stade au droit de l'emplacement des futures tribunes côté Nord, côté Est et côté Sud et dix (10) implantés sur les autres secteurs sur lesquels il est prévu l'aménagement de parvis et de parking. En l'absence de zones sources potentielles de pollution, les sondages ont été implantés de façon aléatoire.

La caractérisation en laboratoire accrédité des sols investigués montre qu'ils présentent globalement une bonne qualité, aucun impact des substances organiques recherchées et aucune anomalie vis-à-vis des éléments métalliques recherchés n'ayant été mis en évidence.

Il est toutefois précisé qu'une partie des sols investigués, correspondant au premier horizon recoupé au droit de l'emplacement des futures tribunes Est et Sud, ne présente pas une qualité inerte au strict sens de l'arrêté du 12 décembre 2014 compte tenu de la mise en évidence de légers dépassement de la valeur limite fixée par cet arrêté pour les fluorures sur la fraction solubilisée. Ces sols, qui ne peuvent pas être assimilés à des matériaux inertes, doivent, compte tenu des teneurs en fluorures mesurées sur la fraction solubilisée, comprises entre 1 et 3 fois la valeur limite, être considérés comme des matériaux « inertes + ». Il est donc recommandé dans le cadre des futurs travaux à réaliser sur ces secteurs de prévoir le maintien de ces sols sur le site, puisque, s'ils devaient être éliminés hors site, ils ne pourraient pas être évacués vers une installation de stockage de déchets inertes classiques (ISDI), mais devraient être orientés vers une installation de stockage spécifiquement autorisée à recevoir ce type de matériaux (ISDI +) entrainant un surcoût significatif.

Liste des Figures

Liste des Fi	gures :	
Figure 1 :	Vue aérienne du site d'intérêt et de son voisinage	4
Figure 2 :	Vues aériennes historiques retraçant l'évolution	
	du site d'intérêt de 1946 à 1996	7
Figure 3 :	Vues aériennes historiques retraçant l'évolution	
	du site d'intérêt de 1981 à 2018	8
Figure 4 :	Représentation schématique de la coupe géologique Ouest-Est	
	de la plaine de la Limagne au niveau de Clermont-Ferrand	10
Figure 5 :	Extrait de la carte géologique de Clermont-Ferrand	11
Figure 6 :	Localisation des points d'eau déclarés les plus proches du site d'intérêt	15
Figure 7 :	Représentation cartographique du réseau hydrographique autour du site d'intérêt	16
Figure 8 :	Extrait du zonage réglementaire du PPRNPi de l'agglomération clermontoise	18
Figure 9 :	Cartographie des zones protégées recensées à proximité du site d'intérêt	19
Figure 10 :	Diagramme relatif à l'orientation des déchets vers les différents types	
	de décharge définis par la Directive 1999/31/CE	30

Liste des Tableaux

Liste des Ta	bleaux :	
Tableau 1 :	Résultats obtenus pour l'analyse des COV effectuée in-situ	
	sur les gaz du sol lors de l'opération de sondage et programme	
		24
Tableau 2 :	Résultats obtenus pour l'analyse des COV effectuée in-situ	
	sur les gaz du sol lors de l'opération de sondage et programme	
		25
Tableau 3 :	Composition des échantillons composites constitués à l'issue	
		26
Tableau 4 :	3	28
Tableau 5 :	Catégories des différents types de déchets/matériaux	
		31
Tableau 6 :	Valeurs médianes représentatives du fond géochimique français pour les	
	, , , , , , , , , , , , , , , , , , ,	32
Tableau 7 :	Résultats obtenus pour la caractérisation des échantillons	
	COMP ST1-2-3.N1, COMP ST1-2-3.N2, COMP ST4-5.N1, ST7.0 et COMP ST4-5-6-7.N2	
	vis-à-vis des critères définissant les matériaux inertes sur le matériau brut	2 -
Tablaau 0 .	() oto da :2 doco o 20 : ./	35
Tableau 8 :	Résultats obtenus pour la caractérisation des échantillons COMP ST9-10.N1, COMP ST8-9-10.N2, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1 et COMP ST19-20.N1	
	vis-à-vis des critères définissant les matériaux inertes sur le matériau brut	
		36
Tableau 9 :	Résultats obtenus pour la caractérisation des échantillons	,0
rabicau 7.	COMP ST1-2-3.N1, COMP ST1-2-3.N2, COMP ST4-5.N1, ST7.0 et COMP ST4-5-6-7.N2	
	vis-à-vis des critères définissant les matériaux inertes sur la fraction solubilisée	
		37
Tableau 10 :	Résultats obtenus pour la caractérisation des échantillons COMP ST9-10.N1,	
	COMP ST8-9-10.N2, COMP ST11-12-13-14.N1, COMP ST15-16-17.N1 et COMP ST19-20.N1	
	vis-à-vis des critères définissant les matériaux inertes sur la fraction solubilisée	
	(38
Tableau 11 :	Résultats obtenus pour l'analyse sur le matériau brut des hydrocarbures	
	totaux (HCT C ₁₀ -C ₄₀) effectuée sur les dix (10) échantillons représentatifs	
	du premier horizon de sol recoupé au droit du site d'intérêt	
	, , , , , , , , , , , , , , , , , , , ,	<i>42</i>
Tableau 12 :	Résultats obtenus pour l'analyse sur le matériau brut des éléments	
	traces métalliques (ETM) effectuée sur les dix (10) échantillons	
	représentatifs du premier horizon de sol recoupé au droit du site d'intérêt	
T 11 40	, , , , , , , , , , , , , , , , , , , ,	43
i ableau 13 :	Valeurs médianes et moyennes des concentrations en éléments traces	
	métalliques (ETM) mesurées sur le matériau brut pour	1.3
	les dix (10) échantillons de sol analysés4	ŧδ

Liste des Annexes

Désignation :

Annexe I

Situation générale du site d'intérêt

Annexe II

Plan de masse

Annexe III

Plan d'implantation des sondages

Annexe IV

Reportage photographique

Annexe V

Profils lithologiques des sondages

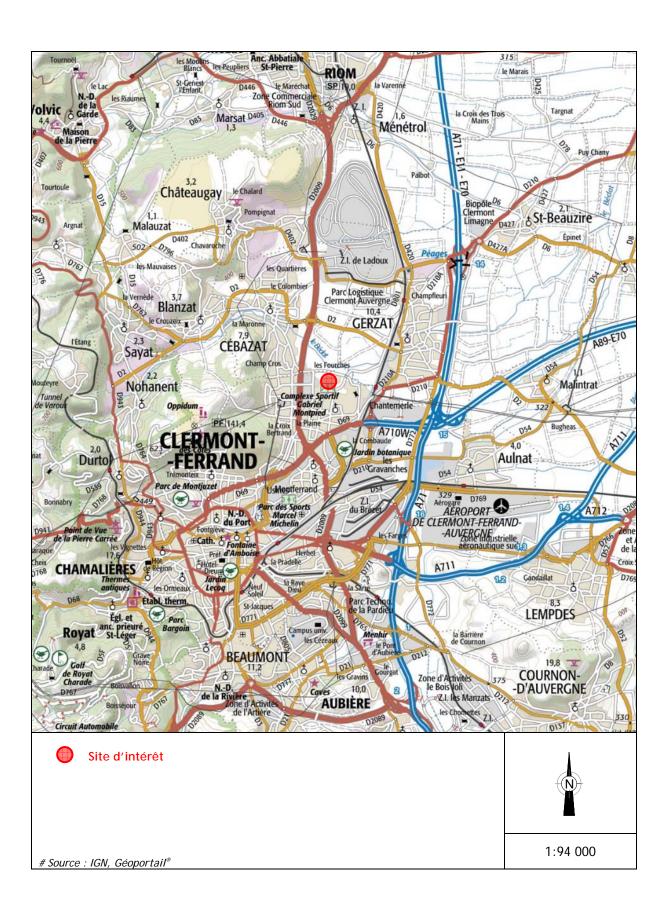
Annexe VI

Bordereaux d'analyse

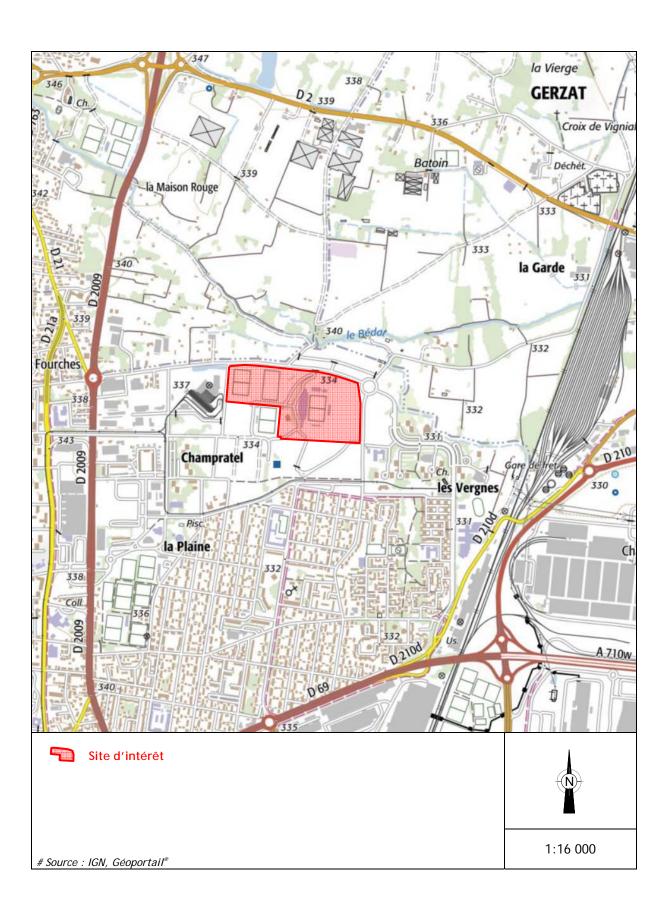
Annexe VII

Accréditations du laboratoire d'analyse

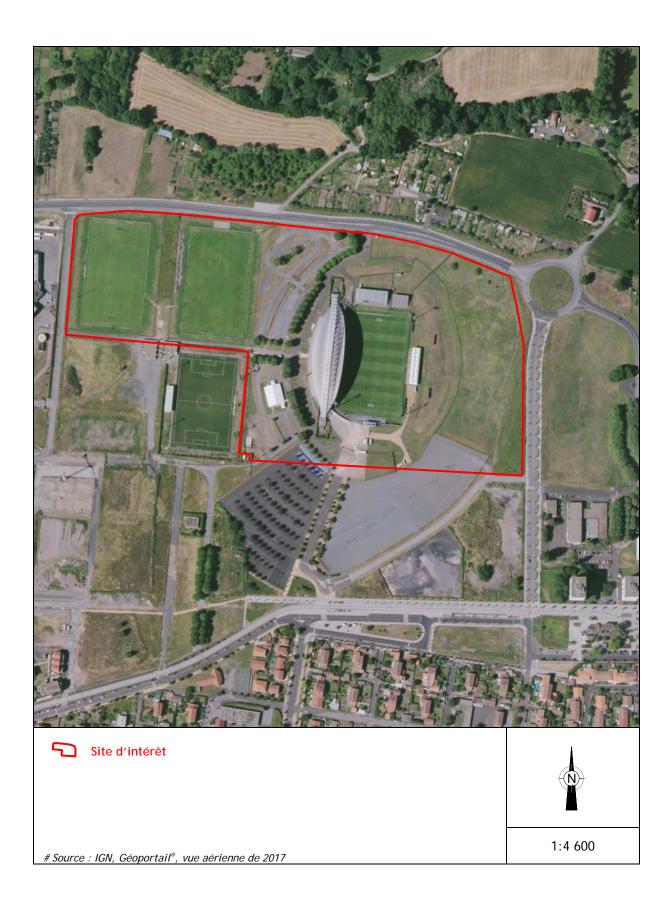
Annexe I

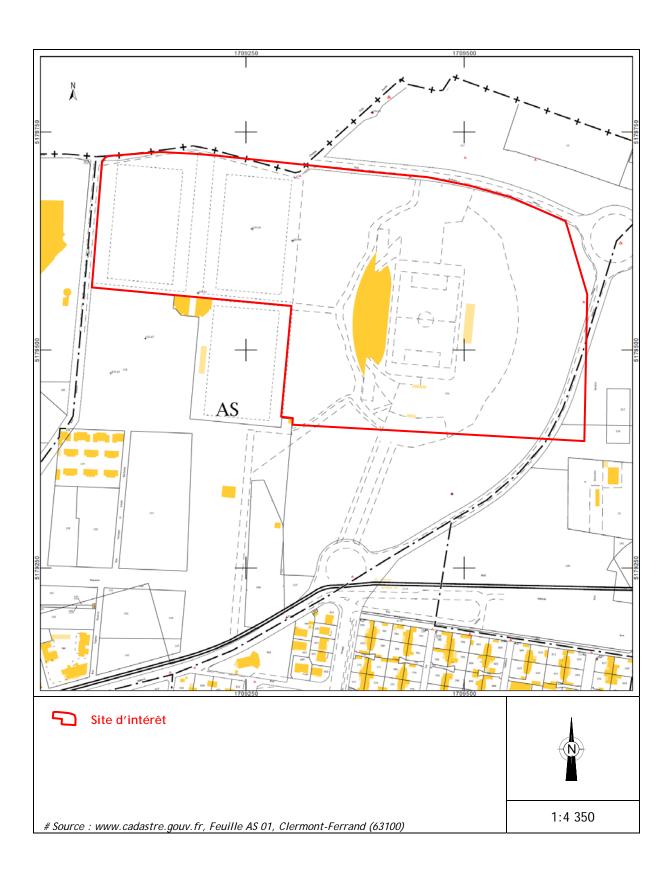

Sources : IGN & Cadastre

Situation générale du site d'intérêt

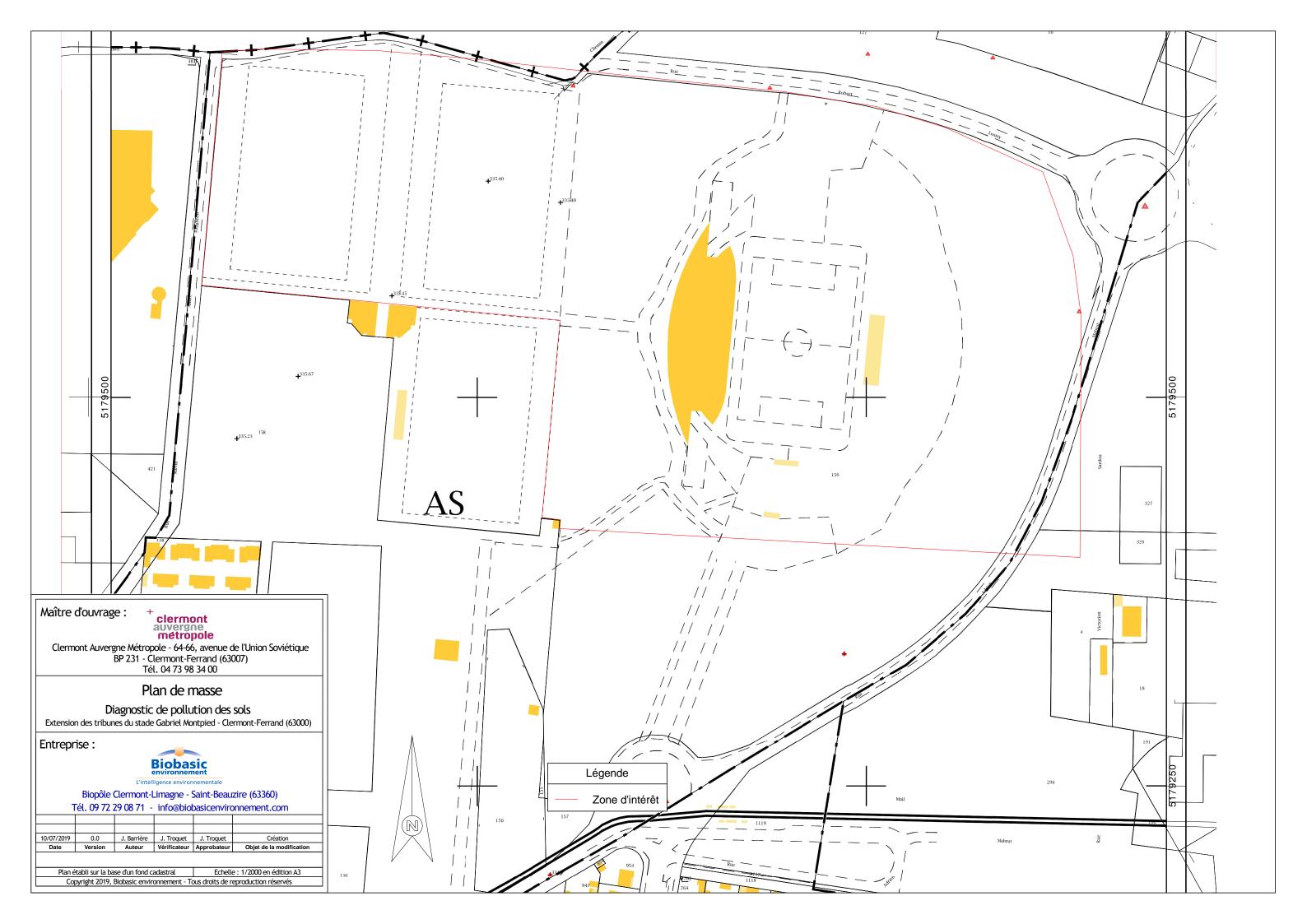

Diagnostic de pollution des sols Projet d'extension des tribunes du stade Gabriel Montpied - Clermont-Fd (63100)

BE/CAM-SGM.SSP.diag/06.19/jt.v0 - confidentiel Annexe I; Sources: IGN & Cadastre Copyright © 2019, Biobasic Environnement® - Tous droits de reproduction réservés




Diagnostic de pollution des sols Projet d'extension des tribunes du stade Gabriel Montpied - Clermont-Fd (63100)

BE/CAM-SGM.SSP.diag/06.19/jt.v0 - confidentiel Annexe I; Sources: IGN & Cadastre Copyright © 2019, Biobasic Environnement® - Tous droits de reproduction réservés

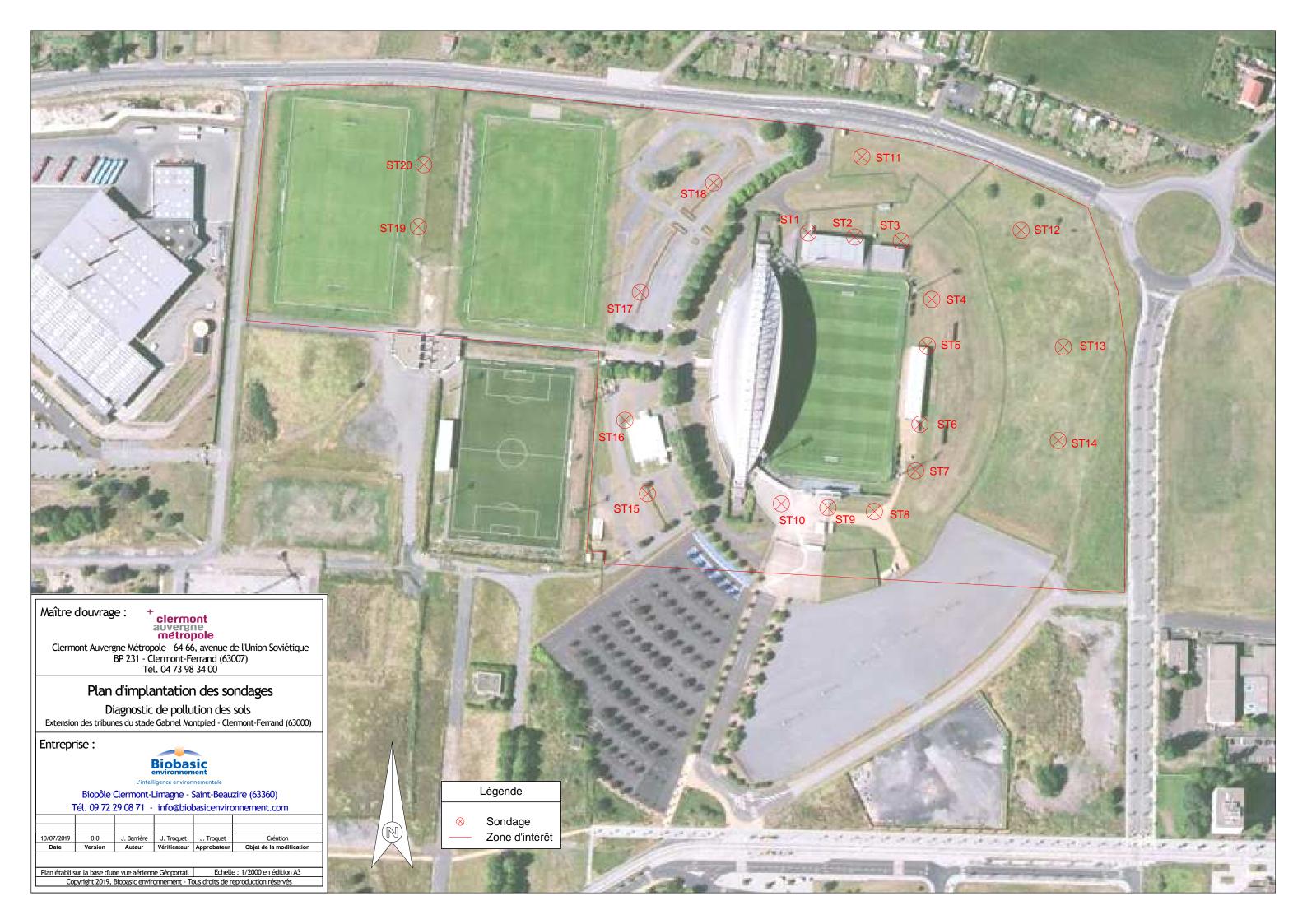


Annexe II

Source: Biobasic Environnement

Plan de masse du site d'intérêt

BE/CAM-SGM.SSP.diag/06.19/jt.v0 - confidentiel Annexe II ; Source : Biobasic Environnement Copyright © 2019, Biobasic Environnement® - Tous droits de reproduction réservés


Annexe III

Source: Biobasic Environnement

Plan d'implantation des sondages

Diagnostic de pollution des sols Projet d'extension des tribunes du stade Gabriel Montpied - Clermont-Fd (63100)

BE/CAM-SGM.SSP.diag/06.19/jt.v0 - confidentiel Annexe III ; Source : Biobasic Environnement Copyright © 2019, Biobasic Environnement® - Tous droits de reproduction réservés

Annexe IV

Source: Biobasic Environnement

Reportage photographique - prises de vue du 19 juin 2019 -

Figure 1: Vue du stade et de la tribune Ouest

Figure 2 : Vue du stade depuis la tribune modulaire Nord

Figure 3 : Vue du côté Est du stade

Figure 4 : Vue de la réalisation du sondage ST1 sur l'arrière de la tribune modulaire Nord

Figure 5 : Vue de la réalisation du sondage ST2 sur l'arrière de la tribune modulaire Nord

Figure 6 : Vue de la réalisation du sondage ST2 sur l'arrière de la tribune modulaire Nord

Figure 7 : Vue de la réalisation du sondage ST3 sur l'arrière de la petite tribune modulaire Nord

Vue de la réalisation du sondage ST3 sur Figure 8: l'arrière de la petite tribune modulaire Nord

Figure 9 : Vue de la réalisation du sondage ST4

Figure 10 : Vue de la réalisation du sondage ST4

Figure 11 : Vue de la réalisation du sondage ST5 au droit de la tribune modulaire Est

Figure 12 : Vue de la réalisation du sondage ST5 au droit de la tribune modulaire Est

Vue de l'emplacement du point Figure 13: de sondage ST6 réalisé à l'angle de la tribune modulaire Est

Figure 14: Vue de l'emplacement du point de sondage ST6 réalisé à l'angle de la tribune modulaire Est

Figure 15 : Vue de la réalisation du sondage ST7

Figure 16 : Vue de la réalisation du sondage ST8

Figure 17: Vue de la réalisation du sondage ST8

Figure 18 : Vue de la réalisation du sondage ST9

Figure 19 : Vue de la réalisation du sondage ST10

Figure 20 : Vue de la réalisation du sondage ST10

Figure 21 : Vue de la réalisation du sondage ST11

Figure 22 : Vue de la réalisation du sondage ST12

Figure 23: Vue de la réalisation du sondage ST13

Figure 24 : Vue de la réalisation du sondage ST14

Figure 25 : Vue de la réalisation du sondage ST15

Figure 26 : Vue de la réalisation du sondage ST16

Figure 27 : Vue de la réalisation du sondage ST17

Figure 28 : Vue de la réalisation du sondage ST17

Figure 29: Vue de la réalisation du sondage ST18

Figure 30 : Vue de la réalisation du sondage ST18

Figure 31 : Vue de la réalisation du sondage ST19

Figure 32 : Vue de la réalisation du sondage ST20

Annexe V

Source: Biobasic Environnement

Profils lithologiques des sondages

Diagnostic de pollution des sols Projet d'extension des tribunes du stade Gabriel Montpied - Clermont-Fd (63100)

BE/CAM-SGM.SSP.diag/06.19/jt.v0 - confidentiel Annexe V ; Source : Biobasic Environnement Copyright © 2019, Biobasic Environnement® - Tous droits de reproduction réservés 1

Sondage de reconnaissance de pollution Sondage ST1

Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Client : Clermont Auvergne Métropole

Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied Clermont-Ferrand (63000)

Zone d'intervention : **Tribune Nord** Date de réalisation : **19/06/2019**

Foration	Rense	eignement	s Géologiques et Hydroge	éologiques		Rense	eignements Po	llution	
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle o	le la	COV (ppm)*	Référence prélèvements	Type d'analyse
	0,50		Terre végétale argileuse marron			0,50	<0,1	ST1.0 (0-50 cm)	COMP ST1-2-3.N1 : Pack inerte
Forage à la tarière hélicoïdale (diamètre 152 mm)	2,00		Sables volcaniques grossiers noirs			2,00	<0,1	ST1.50 (50-200 cm)	COMP ST1-2-3.N2 : Pack inerte
	3,00		Sables cendrés volcaniques fins noirs		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST1.200 (200-300 cm)	

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

Sondage de reconnaissance de pollution Sondage ST2

Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Client : Clermont Auvergne Métropole

Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied

Clermont-Ferrand (63000)

Zone d'intervention : $\mbox{Tribune Nord}$ Date de réalisation : 19/06/2019

Foration	Rense	eignement	s Géologiques et Hydrog	éologiques		Rense	eignements Pol	lution	
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle d pollution	e la	COV (ppm)*	Référence prélèvements	Type d'analyse
	0,60		Terre végétale argileuse marron			0,60	<0,1	ST2.0 (0-60 cm)	HCT C ₁₀ -C ₄₀ Pack 12 EM COMP ST1-2-3.N1: Pack inerte
Forage à la tarière hélicoïdale (diamètre 152 mm)	2,00		Sables volcaniques grossiers noirs			2,00	<0,1	ST2.60 (60-200 cm)	COMP ST1-2-3.N2 : Pack inerte
	3,00		Sables cendrés volcaniques très fins noirs		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST2.200 (200-300 cm)	

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

HCT C₁₀-C₄₀: Hydrocarbures totaux

Sondage de reconnaissance de pollution

Sondage ST3

Client : Clermont Auvergne Métropole Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Maître d'œuvre : Biobasic Environnement

Lieux des travaux : Stade Gabriel Montpied Clermont-Ferrand (63000)

Zone d'intervention : $\mbox{Tribune Nord}$ Date de réalisation : 19/06/2019

					Date de realisation.	19/00/2	2019		
Foration	Rense	eignement	s Géologiques et Hydroge	éologiques		Rense	eignements Po	llution	
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle de pollution	e la	COV (ppm)*	Référence prélèvements	Type d'analyse
ooldale)	1,20		Terre végétale argileuse marron			1,20	<0,1	ST3.0 (0-120 cm)	COMP ST1-2-3.N1 : Pack inerte
Forage à la tarière hélicoïdale (diamètre 152 mm)	3,00		Sables volcaniques fins puis grossiers noirs		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST3.120 (120-300 cm)	COMP ST1-2-3.N2 : Pack inerte

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

iv

Sondage de reconnaissance de pollution Sondage ST4

Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Client : Clermont Auvergne Métropole

Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied

Clermont-Ferrand (63000) Zone d'intervention : **Tribune Est**Date de réalisation : **19/06/2019**

					Date de realisation : 19/06/2019					
Foration	Rense	eignement	s Géologiques et Hydrogé	ologiques	Renseignements Pollution					
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle de pollution	e la	COV (ppm)*	Référence prélèvements	Type d'analyse	
Forage à la tanère hélicoïdale (diamètre 152 mm)	1,90		Argiles noires			1,90	<0,1	ST4.0 (0-190 cm)	HCT C ₁₀ -C ₄₀ Pack 12 EM COMP ST4-5.N1: Pack inerte	
G.	3,00		Sables volcaniques grossiers noirs		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST4.190 (190-300 cm)	COMP ST4-5-6-7.N2 : Pack inerte	

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

HCT C 10 -C 40: Hydrocarbures totaux

Sondage de reconnaissance de pollution Sondage ST5

Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Client : Clermont Auvergne Métropole

Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied Clermont-Ferrand (63000)

Zone d'intervention : **Tribune Est**Date de réalisation : **19/06/2019**

	Date de realisation : 19/06/2019										
Foration	Rense	ignemen	ts Géologiques et Hydrogé	ologiques		Rense	eignements Po	llution			
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie Observation visuel pollution		e la	COV (ppm)*	Référence prélèvements	Type d'analyse		
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,80		Argiles noires			1,80	<0,1	ST5.0 (0-180 cm)	COMP ST4-5.N1 : Pack inerte		
Forac	3,00		Sables volcaniques grossiers noirs très humides à partir de 2,8 mètres		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST5.180 (180-300 cm)	COMP ST4-5-6-7.N2 : Pack inerte		

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

Sondage de reconnaissance de pollution Sondage ST6 Référence affaire : BEA638-006-SGM-SSP.diag Client : Clermont Auvergne Métropole

Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied

Clermont-Ferrand (63000)

Zone d'intervention : Tribune Est Date de réalisation : 19/06/2019

					54.5 45 F64.164.1511 10/00/2010					
Foration	Rense	eignement	s Géologiques et Hydroge	éologiques	Renseignements Pollution					
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle o	de la	COV (ppm)*	Référence prélèvements	Type d'analyse	
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,80		Sables volcaniques fins noirs à passées marron			1,80	<0,1	ST6.0 (0-180 cm)	HCT C ₁₀ -C ₄₀ Pack 12 EM	
Fora	2,80		Sables volcaniques grossiers noirs humides en fond		Pas de pollution	2,80	<0,1	ST6.180 (180-280 cm)	COMP ST4-5-6-7.N2 : Pack inerte	
	3,00		Limons sableux noirs humides		apparente, aucune odeur particulière	3,00	<0,1	ST6.280 (280-300 cm)		

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

HCT C 10 -C 40: Hydrocarbures totaux

Sondage de reconnaissance de pollution Sondage ST7

Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Client : Clermont Auvergne Métropole Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied

Clermont-Ferrand (63000)

Zone d'intervention : Tribune Est Date de réalisation : 19/06/2019

					Date de realisation : 19/00/2019						
Foration	Rense	eignement	s Géologiques et Hydrogé	éologiques	Renseignements Pollution						
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle d	le la	COV (ppm)*	Référence prélèvements	Type d'analyse		
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,80		Cendres volcaniques beiges à blanches			1,80	<0,1	ST7.0 (0-180 cm)	Pack inerte		
Fora	3,00		Sables volcaniques grossiers noirs très humides à partir de 2,8 mètres		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST7.180 (180-300 cm)	COMP ST4-5-6-7.N2: Pack inerte		

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

Sondage de reconnaissance de pollution Sondage ST8

Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Client : Clermont Auvergne Métropole Maître d'œuvre : Biobasic Environnement

Lieux des travaux : Stade Gabriel Montpied Clermont-Ferrand (63000)

Zone d'intervention : **Tribune Sud**Date de réalisation : **19/06/2019**

					Date de réalisation : 19/06/2019					
Foration	Rense	eignement	s Géologiques et Hydrogé	ologiques	Renseignements Pollution					
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle d pollution	e la	COV (ppm)*	Référence prélèvements	Type d'analyse	
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,60		Sables argileux marron à noirs			1,60	<0,1	ST8.0 (0-160 cm)	HCT C ₁₀ -C ₄₀ Pack 12 EM	
Forage à la (diamé	3,00		Sables volcaniques grossiers noirs très humides à partir de 2,8 mètres		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST8.160 (160-300 cm)	COMP ST8-9-10.N2 : Pack inerte	

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

HCT C 10 -C 40: Hydrocarbures totaux

Sondage de reconnaissance de pollution Sondage ST9

Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt

Client : Clermont Auvergne Métropole Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied

Clermont-Ferrand (63000)

Zone d'intervention : $\mbox{Tribune Sud}$ Date de réalisation : 19/06/2019

	Date de l'édisation : 19/00/2019										
Foration	Rense	eignement	s Géologiques et Hydroge	éologiques	Renseignements Pollution						
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle d pollution	e la	COV (ppm)*	Référence prélèvements	Type d'analyse		
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,60		Argiles marron			1,60	<0,1	ST9.0 (0-160 cm)	COMP ST9-10.N1 : Pack inerte		
Forage à la ' (diame	3,00		Sables volcaniques grossiers noirs humides à partir de 2,8 mètres		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST9.160 (160-300 cm)	COMP ST8-9-10.N2: Pack inerte		

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

Sondage de reconnaissance de pollution Sondage ST10

Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Client : Clermont Auvergne Métropole

Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied

Clermont-Ferrand (63000)
Zone d'intervention : Tribune Sud
Date de réalisation : 19/06/2019

	240 40 (0410410) 1 1000/2010										
Foration	Rense	eignemen	ts Géologiques et Hydrog	éologiques	Renseignements Pollution						
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle o	de la	COV (ppm)*	Référence prélèvements	Type d'analyse		
	0,25		Dalle béton			0,25					
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,80		Argiles marron foncé compactes			1,80	<0,1	ST10.25 (25-180 cm)	HCT C ₁₀ -C ₄₀ Pack 12 EM COMP ST9-10.N1: Pack inerte		
Fora	3,00		Sables volcaniques grossiers noirs humides à partir de 2,9 mètres		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST10.180 (180-300 cm)	COMP ST8-9-10.N2 : Pack inerte		

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

HCT C 10 -C 40: Hydrocarbures totaux

Sondage de reconnaissance de pollution

Sondage ST11

Référence affaire : BEA638-006-SGM-SSP.diag

Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt

Maître d'œuvre : Biobasic Environnement

Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied

Clermont-Ferrand (63000)
Zone d'intervention : Nord de la tribune Nord

Date de réalisation : 19/06/2019

		Date de l'edisation : 13/0/2013										
Foration	Rense	eignemen	ts Géologiques et Hydroge	éologiques	Renseignements Pollution							
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle o	le la	COV (ppm)*	Référence prélèvements	Type d'analyse			
	0,10		Terre végétale argileuse			0,10	<0,1					
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,60		Sables très fins marron			1,60	<0,1	ST11.10 (10-160 cm)	COMP ST11-12-13-14.N1 : Pack inerte			
Forage à la (diam	3,00		Sables volcaniques grossiers noirs		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST11.160 (160-300 cm)				

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

Sondage de reconnaissance de pollution

Sondage ST12

Référence affaire : BEA638-006-SGM-SSP.diag Client : Clermont Auvergne Métropole Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Maître d'œuvre : Biobasic Environnement

Lieux des travaux : Stade Gabriel Montpied

Clermont-Ferrand (63000) Zone d'intervention : Est de la tribune Est Date de réalisation : 19/06/2019

		Date de realisation : 19/06/2019										
Foration	Rense	eignement	s Géologiques et Hydrogé	éologiques	Renseignements Pollution							
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle d	le la	COV (ppm)*	Référence prélèvements	Type d'analyse			
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,50		Sables fins marron			1,50	<0,1	ST12.0 (0-150 cm)	HCT C ₁₀ -C ₄₀ Pack 12 EM COMP ST11-12-13-14.N1: Pack inerte			
Forage à la tar (diamètre	3,00		Sables volcaniques grossiers noirs humides à partir de 2,8 mètres		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST12.150 (<i>150-300 cm</i>)				

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

HCT C 10 -C 40: Hydrocarbures totaux

Sondage de reconnaissance de pollution Sondage ST13

Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Client : Clermont Auvergne Métropole

Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied

Clermont-Ferrand (63000) Zone d'intervention : Est de la tribune Est

Date de réalisation : 19/06/2019

					Date de realisation.	19/00/	2019			
Foration	Rense	eignement	s Géologiques et Hydrogé	éologiques	Renseignements Pollution					
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle d	le la	COV (ppm)*	Référence prélèvements	Type d'analyse	
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,70		Cendres volcaniques marron à grises très fines et très légères			1,70	<0,1	ST13.0 (<i>0</i> -170 cm)	COMP ST11-12-13-14.N1 : Pack inerte	
Forage (di	3,00		Sables volcaniques grossiers noirs humides à partir de 2,5 mètres		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST13.170 (170-300 cm)		

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

Sondage de reconnaissance de pollution Sondage ST14

Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Client : Clermont Auvergne Métropole

Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied

Clermont-Ferrand (63000) Zone d'intervention : Est de la tribune Est

Date de réalisation : 19/06/2019

					Date de realisation.	13/00/2	2019			
Foration	Rense	eignement	s Géologiques et Hydroge	éologiques	Renseignements Pollution					
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle d pollution	e la	COV (ppm)*	Référence prélèvements	Type d'analyse	
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,60		Sables fins légèrement argileux marron en mélange avec des cendres volcaniques très fines grises			1,60	<0,1	ST14.0 (0-160 cm)	HCT C ₁₀ -C ₄₀ Pack 12 EM COMP ST11-12-13-14.Nt Pack inerte	
Forage à la (diam	3,00		Sables volcaniques fins noirs		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST14.160 (160-300 cm)		

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

HCT C 10 -C 40: Hydrocarbures totaux

Sondage de reconnaissance de pollution

Sondage ST15

Référence affaire : BEA638-006-SGM-SSP.diag

Client : Clermont Auvergne Métropole
Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt

Maître d'œuvre : Biobasic Environnement

Maître d'œuvre : **Biobasic Environnement** Lieux des travaux : **Stade Gabriel Montpied**

Clermont-Ferrand (63000)

Zone d'intervention : Parking Ouest (Ouest de la tribune Ouest)

Date de réalisation : 19/06/2019

Foration	Rense	eignemen	ts Géologiques et Hydrog	éologiques		Rense	Renseignements Pollution				
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle d	le la	COV (ppm)*	Référence prélèvements	Type d'analyse		
	0,20		Terre végétale marron			0,20	<0,1				
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,80		Sables volcaniques fins noirs			1,80	<0,1	ST15.20 (20-180 cm)	HCT C ₁₀ -C ₄₀ Pack 12 EM COMP ST15-16-17.N1: Pack inerte		
Fora	3,00		Sables volcaniques grossiers humides à partir de 2,5 mètres avec passées de limons argileux marron		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST15.180 (180-300 cm)			

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

HCT C 10 -C 40: Hydrocarbures totaux

Sondage de reconnaissance de pollution

Sondage ST16

Référence affaire : BEA638-006-SGM-SSP.diag

Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt

Maître d'œuvre : Biobasic Environnement

Lieux des travaux : Stade Gabriel Montpied Clermont-Ferrand (63000)

Zone d'intervention : Parking Ouest (Ouest de la tribune Ouest)

Date de réalisation : 19/06/2019

Foration	Rense	eignement	s Géologiques et Hydroge	éologiques	Renseignements Pollution					
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle d	e la	COV (ppm)*	Référence prélèvements	Type d'analyse	
	0,50		Terre végétale argileuse marron			0,50	<0,1	ST16.0 (0-50 cm)		
Forage à la tarière hélicoidale (diamètre 152 mm)	1,50		Sables volcaniques fins à grossiers noirs			1,50	<0,1	ST16.50 (50-150 cm)	COMP ST15-16-17.N1 Pack inerte	
Forage à la tari (diamètre	3,00		Sables volcaniques grossiers noirs humides à partir de 2,5 mètres avec passées de limons argileux marron		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST16.150 (150-300 cm)		

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

xvii

Sondage de reconnaissance de pollution Sondage ST17

Référence affaire : BEA638-006-SGM-SSP.diag

Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt

Client : Clermont Auvergne Métropole Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied

Clermont-Ferrand (63000)

Zone d'intervention : Parking Ouest (Ouest de la tribune Ouest)

Date de réalisation : 19/06/2019

Foration	Rense	eignement	s Géologiques et Hydroge	éologiques		Rense	eignements Pol	llution	
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle d	le la	COV (ppm)*	Référence prélèvements	Type d'analyse
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,50		Sables volcaniques fins noirs légèrement argileux sur les 50 premiers cm			1,50	<0,1	ST17.0 (0-150 cm)	HCT C ₁₀ -C ₄₀ Pack 12 EM COMP ST15-16-17.N1: Pack inerte
Forage à la ta (diamètr	3,00		Sables volcaniques grossiers noirs		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST17.150 (150-300 cm)	

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

HCT C 10 -C 40: Hydrocarbures totaux

Sondage de reconnaissance de pollution Sondage ST18

Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Client : Clermont Auvergne Métropole

Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied Clermont-Ferrand (63000)

Zone d'intervention : Parking Ouest (Ouest de la tribune Ouest)

Date de réalisation : 19/06/2019

Foration	ration Renseignements Géologiques et Hydrogéologiques			Renseignements Pollution					
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle d pollution	e la	COV (ppm)*	Référence prélèvements	Type d'analyse
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,50		Sables argileux marron			1,50	<0,1	ST18.0 (0-150 cm)	HCT C ₁₀ -C ₄₀ Pack 12 EM
Forage à la tar (diamètre	3,00		Sables volcaniques noirs très fins entre 2,5 et 3 mètres		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST18.150 (150-300 cm)	

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

HCT C 10 -C 40: Hydrocarbures totaux

Sondage de reconnaissance de pollution

Référence affaire : BEA638-006-SGM-SSP.diag Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt Sondage ST19

Client : Clermont Auvergne Métropole

Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied

Clermont-Ferrand (63000)

Zone d'intervention : **Terrain Ouest**Date de réalisation : **19/06/2019**

					Date de realisation :	19/06/2	2019			
Foration	Rense	eignement	s Géologiques et Hydrogé	ologiques	Renseignements Pollution					
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle o	le la	COV (ppm)*	Référence prélèvements	Type d'analyse	
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,90		Sables très fins marron			1,90	<0,1	ST19.0 (0-190 cm)	COMP ST19-20.N1 : Pack inerte	
Я	3,00		Sables volcaniques grossiers noirs avec passages argileux marron humides vers 2,5 mètres		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST19.190 (190-300 cm)		

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

Sondage de reconnaissance de pollution

Sondage ST20

Référence affaire : BEA638-006-SGM-SSP.diag

Référence rapport : BE/CAM-SGM.SSP.diag/06.19/jt

Maître d'œuvre : Biobasic Environnement

Maître d'œuvre : Biobasic Environnement Lieux des travaux : Stade Gabriel Montpied Clermont-Ferrand (63000)

Zone d'intervention : **Terrain Ouest**Date de réalisation : **19/06/2019**

					Date de realisation :	19/06/	2019			
Foration	Rense	ignement	s Géologiques et Hydrogé	ologiques	Renseignements Pollution					
Type de sondage	Prof. (m)	Schéma	Description lithologique	Hydrologie	Observation visuelle d	le la	COV (ppm)*	Référence prélèvements	Type d'analyse	
Forage à la tarière hélicoïdale (diamètre 152 mm)	1,80		Sables très fins marron			1,80	<0,1	ST20.0 (0-180 cm)	COMP ST19-20.N1 : Pack inerte	
Forac	3,00		Sables volcaniques grossiers noirs humides vers 2,5 mètres		Pas de pollution apparente, aucune odeur particulière	3,00	<0,1	ST20.180 (180-300 cm)		

^{*} Mesure de la teneur en Composés Organiques Volatils dans les gaz du sol par détection à photo-ionisation (PID)

Pack inerte : pack analytique comprenant l'ensemble des analyses nécessaires à la définition d'un matériau inerte. Le programme analytique est conforme à celui fixé par l'arrêté du 12 décembre 2014 et comprend la réalisation d'analyses sur le matériau brut et sur le lixiviat après lixiviation de 24h selon la norme NF EN 12457-2.

Annexe VI

Source : Laboratoires Wessling

Bordereaux d'analyse

Diagnostic de pollution des sols Projet d'extension des tribunes du stade Gabriel Montpied - Clermont-Fd (63100)

BE/CAM-SGM.SSP.diag/06.19/jt.v0 - confidentiel Annexe VI ; Source : Laboratoires Wessling Copyright © 2019, Biobasic Environnement® - Tous droits de reproduction réservés

WESSLING France S.A.R.L. Z.I. De Chesnes Tharable . 40 rue du Ruisseau BP 50705 . 38297 Saint-Quentin-Fallavier Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

WESSLING France S.A.R.L, 40 rue du Ruisseau, 38070 Saint-Quentin-Fallavier Cedex

BIOBASIC Clermont-Ferrand Monsieur Julien TROQUET biopôle Clermont Limagne 63360 Saint Beauzire

ULY19-012903-1 Rapport d'essai n° : Commande n°: ULY-10001-19 Interlocuteur: C. Delente Téléphone: +33 474 999 629 eMail · Caroline.Delente@wessling.fr Date:

Rapport d'essai

BEA638-006-SGM-SSP.DIAG

Les résultats ne se rapportent qu'aux échantillons soumis à l'essai.

Les méthodes couvertes par l'accréditation COFRAC NF EN ISO/CEI 17025 – 2005 sont marquées d'un A au niveau de la norme. Les résultats obtenus par ces méthodes sont accrédités sauf avis contraire en remarque.

Les portées d'accréditation COFRAC n°1-1364 essais du laboratoire Wessling de Lyon (St Quentin Fallavier), COFRAC n°1-5578 du laboratoire Wessling de Paris (Villebon-sur Yvette) et COFRAC n°1-6579 du laboratoire Wessling de Lille (Croix) sont disponibles sur le site www.cofrac.fr pour les résultats accrédités par les

laboratoires Wessling FRANCE.
Les essais effectués par les laboratoires allemands sont accrédités par le DAKKS sous le numéro D-PL-14162-01-00 (www.as.dakks.de). Les essais effectués par le laboratoire hongrois de Budapest sont accrédités par le NAT sous le numéro NAT-1-1398 (www.nat.hu). Les essais effectués par le laboratoire polonais de Krakow sont accrédités par le PCA sous le numéro AB 918 (www.pca.gov.pl).

Ce rapport d'essai ne peut être reproduit que sous son intégralité et avec l'autorisation des laboratoires WESSLING. Les laboratoires WESSLING autorisent leurs clients à extraire tout ou partie des résultats d'essai envoyés à titre indicatif sous format excel uniquement à des fins de

retraitement, de suivi et d'interprétation de données sans faire allusion à l'accréditation des résultats d'essai. La conclusion ne tient pas compte des incertitudes (disponibles sur demande) et n'est pas couverte par l'accréditation

Page 1 sur 13

ii

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

N° d'échantillon		19-100981-01	19-100981-02	19-100981-03	19-100981-04
Désignation d'échantillon	Unité	COMP ST1-2- 3.N1	COMP ST1-2- 3.N2	COMP ST4-5.N1	ST7.0
Analyse physique					
Matière sèche	% mass MB	82,8	85,5	75,8	88,3
Paramètres globaux / Indices					
COT calculé d'ap. matière organique	mg/kg MS	69000	49000	89000	38000
Indice hydrocarbure C10-C40	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C21-C35	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	<20	<20
Benzène et aromatiques (CAV - BTEX)					
Benzène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Toluène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Ethylbenzène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
m-, p-Xylène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
o-Xylène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Cumène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
m-, p-Ethyltoluène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Mésitylène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
o-Ethyltoluène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Pseudocumène	mg/kg MS mg/kg MS	<0,1 -/-	<0,1	<0,1 -/-	<0,1 -/-
Hydrocarbures aromatiques polycyclique Naphtalène	s (HAP) mg/kg MS	<0.05	<0,05	<0.05	<0,05
Acénaphtylène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Acénaphtène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Fluorène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Phénanthrène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Anthracène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Fluoranthène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Pyrène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(a)anthracène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Chrysène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(b)fluoranthène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(k)fluoranthène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(a)pyrène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Dibenzo(ah)anthracène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Indéno(123-cd)pyrène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(ghi)pérylène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Somme des HAP	mg/kg MS	-/-	-/-	-/-	-/-
Polychlorobiphényles (PCB)					
PCB n° 28	mg/kg MS	<0,01	<0,01	<0,01	<0,01
PCB n° 52	mg/kg MS	<0,01	<0,01	<0,01	<0,01
PCB n° 101	mg/kg MS	<0,01	<0,01	<0,01	<0,01
PCB n° 118	mg/kg MS	<0,01	<0,01	<0,01	<0,01
PCB n° 138	mg/kg MS	<0,01	<0,01	<0,01	<0,01
PCB n° 153	mg/kg MS	<0,01	<0,01	<0,01	<0,01
PCB n° 180	mg/kg MS	<0,01	<0,01	<0,01	<0,01
Samma das 7 DCD	ma/ka MS	-/-	1	<u>'</u>	-/-

Page 2 sur 13

mg/kg MS

Somme des 7 PCB

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

St Quentin Fallavier, le 02.07.2019					
N° d'échantillon		19-100981-01 COMP ST1-2-	19-100981-02 COMP ST1-2-	19-100981-03	19-100981-04
Désignation d'échantillon	Unité	3.N1	3.N2	COMP ST4-5.N1	ST7.0
Lixiviation					
Masse totale de l'échantillon	g	69	100	74	76
Masse de la prise d'essai	g	20	20	21	20
Refus >4mm	g	9,8	22	34	2,4
рН		8,5 à 23,3°C	9,3 à 23,4°C	8,4 à 23,2°C	8,8 à 23,2°C
Conductivité [25°C]	μS/cm	130	85	130	77
Sur lixiviat filtré					
Analyse physique					
Résidu sec après filtration	mg/l E/L	<100	<100	<100	<100
Cations, anions et éléments non métalliques					
Chlorures (CI)	mg/l E/L	<10	<10	<10	<10
Sulfates (SO4)	mg/I E/L	26	17	31	<10
Fluorures (F)	mg/I E/L	0,8	0,4	1,2	1,1
Paramètres globaux / Indices					
Phénol (indice)	μg/l E/L	<10	<10	<10	<10
Carbone organique total (COT)	mg/I E/L	3.5	1,7	2,0	2.4
carbonic organique total (co.)	g	-,-	.,.	_,-	_, .
Eléments					
Chrome (Cr)	μg/l E/L	<5.0	<5,0	<5,0	<5,0
Nickel (Ni)	μg/l E/L	<10	<10	<10	<10
Cuivre (Cu)	μg/l E/L	<5,0	<5,0	<5,0	<5,0
Zinc (Zn)	μg/l E/L	<50	<50	<50	<50
Arsenic (As)	μg/l E/L	5,0	7,0	14	16
Sélénium (Se)	μg/l E/L	<10	<10	<10	<10
Cadmium (Cd)	μg/l E/L	<1,5	<1,5	<1,5	<1,5
Baryum (Ba)	μg/l E/L	8,0	<5,0	<5,0	<5,0
Plomb (Pb)	μg/l E/L	<10	<10	<10	<10
Molybdène (Mo)	μg/l E/L	<10	<10	<10	<10
Antimoine (Sb)	μg/l E/L	<5,0	<5,0	<5,0	<5,0
Mercure (Hg)	μg/l E/L	<0,1	<0,1	<0,1	<0,1
Fraction solubilisée					
Eléments					
Mercure (Hg)	mg/kg MS	<0,001	<0,001	<0,001	<0,001
Chrome (Cr)	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Nickel (Ni)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Cuivre (Cu)	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Zinc (Zn)	mg/kg MS	<0,5	<0,5	<0,5	<0,5
Arsenic (As)	mg/kg MS	0,05	0,07	0,14	0,16
Sélénium (Se)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Cadmium (Cd)	mg/kg MS	<0,015	<0,015	<0,015	<0,015
Baryum (Ba)	mg/kg MS	0,08	<0,05	<0,05	<0,05
Plamb (Ph)	ma/ka MS	<0.1	<0.1	<0.1	<0.1

mg/kg MS

mg/kg MS

mg/kg MS

<0,1

< 0.1

<0,05

<0.1

< 0.1

< 0.05

<0,1

<0,1

<0,05

<0.1

<0.1

< 0.05

Plomb (Pb)

Molybdène (Mo)

Antimoine (Sb)

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

N° d'échantillon		19-100981-01 COMP ST1-2-	19-100981-02 COMP ST1-2-	19-100981-03	19-100981-04
Désignation d'échantillon	Unité	3.N1	3.N2	COMP ST4-5.N1	ST7.0
Paramètres globaux / Indices					
Carbone organique total (COT)	mg/kg MS	35,0	17,0	20,0	24,0
Phénol (indice)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Cations, anions et éléments non métalliques					
Sulfates (SO4)	mg/kg MS	260	170	310	<100
Fluorures (F)	mg/kg MS	8,0	4,0	12	11
Chlorures (CI)	mg/kg MS	<100	<100	<100	<100
Analyse physique					
Fraction soluble	ma/ka MS	<1000	<1000	<1000	<1000

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

N° d'échantillon		19-100981-05	19-100981-06	19-100981-07	19-100981-08
Désignation d'échantillon	Unité	COMP ST4-5-6- 7.N2	COMP ST9-10.N1	COMP ST8-9- 10.N2	COMP ST11-12- 13-14.N1
Analyse physique					
Matière sèche	% mass MB	82,6	77,2	79,5	85,0
Paramètres globaux / Indices					
COT calculé d'ap. matière organique	mg/kg MS	74000	80000	25000	29000
Indice hydrocarbure C10-C40	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C21-C35	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	<20	<20
Benzène et aromatiques (CAV - BTEX)					
Benzène	mg/kg MS	<0.1	<0.1	<0.1	<0.1
Toluène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Ethylbenzène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
m-, p-Xylène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
o-Xylène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Cumène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
m-, p-Ethyltoluène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Mésitylène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
o-Ethyltoluène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Pseudocumène	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Hydrocarbures aromatiques polycycliques	(HAP) mg/kg MS	<0.05	<0.05	<0.05	<0.05
Acénaphtylène	mg/kg MS	<0.05	<0.05	<0.05	<0.05
Acénaphtène Acénaphtène	mg/kg MS	<0.05	<0.05	<0.05	<0.05
Fluorène	mg/kg MS	<0.05	<0.05	<0.05	<0.05
Phénanthrène	mg/kg MS	<0.05	<0.05	<0.05	<0.05
Anthracène	mg/kg MS	<0.05	<0.05	<0.05	<0,05
Fluoranthène	mg/kg MS	<0.05	<0.05	<0.05	<0.05
Pyrène	mg/kg MS	<0.05	<0.05	<0.05	<0.05
Benzo(a)anthracène	mg/kg MS	<0.05	<0.05	<0,05	<0.05
Chrysène	mg/kg MS	<0.05	<0.05	<0.05	<0,05
Benzo(b)fluoranthène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(k)fluoranthène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(a)pyrène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Dibenzo(ah)anthracène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Indéno(123-cd)pyrène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Benzo(ghi)pérylène	mg/kg MS	<0,05	<0,05	<0,05	<0,05
Somme des HAP	mg/kg MS	-/-	-/-	-/-	-/-
Polychlorobiphényles (PCB)					
PCB n° 28	mg/kg MS	<0,01	<0,01	<0,01	<0,01
PCB n° 52	mg/kg MS	<0,01	<0,01	<0,01	<0,01
PCB n° 101	mg/kg MS	<0,01	<0,01	<0,01	<0,01
PCB n° 118	mg/kg MS	<0,01	<0,01	<0,01	<0,01
PCB n° 138	mg/kg MS	<0,01	<0,01	<0,01	<0,01
	mg/kg MS	<0,01	<0,01	<0.01	<0,01
PCB n° 153	Hig/kg WS	~0,01	10,01	-0,01	
PCB n° 153 PCB n° 180	mg/kg MS	<0,01	<0,01	<0,01	<0,01

Page 5 sur 13

mg/kg MS

Somme des 7 PCB

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

St Quentin Fallavier, le 02.07.2019	St	Quentin	Fallavier,	le 02.07.2019
-------------------------------------	----	---------	------------	---------------

N° d'échantillon		19-100981-05 COMP ST4-5-6-	19-100981-06	19-100981-07 COMP ST8-9-	19-100981-08 COMP ST11-12-
Désignation d'échantillon	Unité	7.N2	COMP ST9-10.N1	10.N2	13-14.N1
Lixiviation					
Masse totale de l'échantillon	g	69	80	70	80
Masse de la prise d'essai	g	21	21	20	21
Refus >4mm	g	11	38	10	12
рН		8,3 à 23,1°C	8,5 à 23,2°C	8,2 à 23,1°C	8,6 à 23°C
Conductivité [25°C]	μS/cm	25	120	29	83
Sur lixiviat filtré					
Analyse physique					
Résidu sec après filtration	mg/l E/L	<100	<100	<100	<100
Cations, anions et éléments non métalliques					
Chlorures (CI)	mg/I E/L	<10	<10	<10	<10
Sulfates (SO4)	mg/I E/L	<10	<10	<10	<10
Fluorures (F)	mg/l E/L	0,3	1,6	0,3	0,9
		-,-	.,-	-,-	-,-
Paramètres globaux / Indices					
Phénol (indice)	μg/l E/L	<10	<10	<10	<10
Carbone organique total (COT)	mg/l E/L	1,2	2,7	1,5	2,5
Eléments					
	μg/l E/L	<5.0	<5.0	<5.0	<5.0
Chrome (Cr) Nickel (Ni)	μg/I E/L	<10	<10	<10	<10
Cuivre (Cu)	μg/I E/L	<5.0	<5.0	<5.0	<5.0
Zinc (Zn)	μg/I E/L	<50	<50	<50	<50
Arsenic (As)	μg/I E/L	22	43	41	20
Sélénium (Se)	µg/l E/L	<10	<10	<10	<10
Cadmium (Cd)	μg/l E/L	<1,5	<1,5	<1,5	<1,5
Baryum (Ba)	μg/l E/L	12	<5.0	<5,0	<5.0
Plomb (Pb)	μg/l E/L	<10	<10	<10	<10
Molybdène (Mo)	μg/l E/L	<10	<10	<10	<10
Antimoine (Sb)	μg/l E/L	<5,0	<5,0	<5,0	<5,0
Mercure (Hg)	μg/l E/L	<0,1	<0,1	<0,1	<0,1
Fraction solubilisée					
Eléments					
Mercure (Hg)	mg/kg MS	<0.001	<0.001	<0.001	<0.001
Chrome (Cr)	mg/kg MS	<0.05	<0.05	<0.05	<0,05
Nickel (Ni)	mg/kg MS	<0.1	<0.1	<0.1	<0,1
Cuivre (Cu)	mg/kg MS	<0.05	<0.05	<0.05	<0.05
Zinc (Zn)	mg/kg MS	<0,5	<0,5	<0,5	<0,5
Arsenic (As)	mg/kg MS	0,22	0,43	0,41	0,2
Sélénium (Se)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Cadmium (Cd)	mg/kg MS	<0,015	<0,015	<0,015	<0,015
Baryum (Ba)	mg/kg MS	0,12	<0,05	<0,05	<0,05
Plomb (Pb)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Molybdène (Mo)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Antimoine (Sb)	mg/kg MS	<0,05	<0,05	<0,05	<0,05

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

St Quentin Fallavier, le 02.07.2019

N° d'échantillon		19-100981-05 COMP ST4-5-6-	19-100981-06	19-100981-07 COMP ST8-9-	19-100981-08 COMP ST11-12-
Désignation d'échantillon	Unité	7.N2	COMP ST9-10.N1	10.N2	13-14.N1
Paramètres globaux / Indices					
Carbone organique total (COT)	mg/kg MS	12,0	27,0	15,0	25,0
Phénol (indice)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Cations, anions et éléments non métalliques					
Sulfates (SO4)	mg/kg MS	<100	<100	<100	<100
Fluorures (F)	mg/kg MS	3,0	16	3,0	9,0
Chlorures (CI)	mg/kg MS	<100	<100	<100	<100
Analyse physique					
Fraction coluble	ma/ka MS	<1000	<1000	<1000	<1000

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

N° d'échantillon		19-100981-09	19-100981-10
Désignation d'échantillon	Unité	COMP ST15-16- 17.N1	.N1
Analyse physique			
Matière sèche	% mass MB	85.0	86.0
Madere Section	70 mass ms	55,5	33,3
Paramètres globaux / Indices			
COT calculé d'ap. matière organique	mg/kg MS	44000	36000
Indice hydrocarbure C10-C40	mg/kg MS	<20	<20
Hydrocarbures > C10-C12	mg/kg MS	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<20 <20	<20 <20
Hydrocarbures > C16-C21 Hydrocarbures > C21-C35	mg/kg MS mg/kg MS	<20	<20
Hydrocarbures > C35-C40	mg/kg MS	<20	<20
•	mg/kg mo	20	23
Benzène et aromatiques (CAV - BTEX) Benzène	mg/kg MS	<0,1	<0,1
Toluène	mg/kg MS	<0,1	<0,1
Ethylbenzène	mg/kg MS	<0,1	<0,1
m-, p-Xylène	mg/kg MS	<0,1	<0,1
o-Xylène	mg/kg MS	<0,1	<0,1
Cumène	mg/kg MS	<0,1	<0,1
m-, p-Ethyltoluène	mg/kg MS	<0,1	<0,1
Mésitylène	mg/kg MS	<0,1	<0,1
o-Ethyltoluène	mg/kg MS	<0,1	<0,1
Pseudocumène Somme des CAV	mg/kg MS mg/kg MS	<0,1 -/-	<0,1 -/-
Hydrocarbures aromatiques polycycliques (Naphtalène	HAP) mg/kg MS	<0,05	<0,05
Acénaphtylène	mg/kg MS	<0,05	<0,05
Acénaphtène	mg/kg MS	<0,05	<0,05
Fluorène	mg/kg MS	<0,05	<0,05
Phénanthrène	mg/kg MS	<0,05	<0,05
Anthracène	mg/kg MS	<0,05	<0,05
Fluoranthène	mg/kg MS	<0,05	<0,05
Pyrène	mg/kg MS	<0,05	<0,05
Benzo(a)anthracène	mg/kg MS	<0,05	<0,05
Chrysène	mg/kg MS	<0,05	<0,05
Benzo(b)fluoranthène	mg/kg MS	<0,05 <0,05	<0,05 <0,05
Benzo(k)fluoranthène	mg/kg MS mg/kg MS	<0.05	<0,05
Benzo(a)pyrène		<0,05	<0,05
Dibenzo(ah)anthracène Indéno(123-cd)pyrène	mg/kg MS mg/kg MS	<0.05	<0.05
Benzo(ghi)pérylène	mg/kg MS	<0.05	<0.05
Somme des HAP	mg/kg MS	-/-	-/-
	mg/ng mo	,	
Polychlorobiphényles (PCB)	ma/ka MC	<0.01	<0.01
PCB n° 28	mg/kg MS	<0,01 <0.01	<0,01 <0.01
PCB n° 52	mg/kg MS	<0,01	<0,01
PCB n° 101	mg/kg MS mg/kg MS	<0,01	<0,01
PCB n° 118 PCB n° 138	mg/kg MS	<0,01	<0,01
PCB n 138 PCB n° 153	mg/kg MS	<0,01	<0,01
PCB n° 180	mg/kg MS	<0,01	<0,01
Somme des 7 PCB	mg/kg MS	-/-	-/-

Page 8 sur 13

mg/kg MS

Somme des 7 PCB

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

St	Quentin	Fallavier,	le 02.0	7.2019	

N° d'échantillon		19-100981-09 COMP ST15-16-	19-100981-10 COMP ST19-20-	
Désignation d'échantillon	Unité	17.N1	.N1	
Lixiviation				
Masse totale de l'échantillon	g	75	81	
Masse de la prise d'essai	g	21	21	
Refus >4mm	g	5,0	17	
pH	6/	8,3 à 23,2°C	8,4 à 23°C	
Conductivité [25°C]	μS/cm	74	56	
Sur lixiviat filtré				
Analyse physique				
Résidu sec après filtration	mg/l E/L	<100	<100	
Outlines entires at them to the them.				
Cations, anions et éléments non métalliques				
Chlorures (CI)	mg/l E/L	<10	<10	
Sulfates (SO4)	mg/I E/L	<10	<10	
Fluorures (F)	mg/l E/L	0,7	0,7	
Davana ktora alah ayus / In -!!				
Paramètres globaux / Indices				
Phénol (indice)	μg/l E/L	<10	<10	
Carbone organique total (COT)	mg/l E/L	3,9	2,2	
Eléments				
Chrome (Cr)	μg/l E/L	<5,0	<5,0	
Nickel (Ni)	μg/l E/L	<10	<10	
Cuivre (Cu)	μg/l E/L	<5,0	<5,0	
Zinc (Zn)	μg/l E/L	<50	<50	
Arsenic (As)	μg/l E/L	7,0	15	
Sélénium (Se)	μg/l E/L	<10	<10	
Cadmium (Cd)	μg/l E/L	<1,5 13	<1,5 <5,0	
Baryum (Ba)	μg/l E/L μg/l E/L	<10	<5,0 <10	
Plomb (Pb) Molybdène (Mo)	μg/I E/L	<10	<10	
Antimoine (Sb)	μg/I E/L	<5,0	<5,0	
Mercure (Hg)	μg/I E/L	<0,1	<0,1	
Mercure (rig)		-,.	-,.	
Fraction solubilisée				
Eléments				
	mg/kg MS	<0.001	<0.001	
Mercure (Hg) Chrome (Cr)	mg/kg MS	<0,001	<0.05	
Nickel (Ni)	mg/kg MS	<0.1	<0,05	
Cuivre (Cu)	mg/kg MS	<0.05	<0.05	
Zinc (Zn)	mg/kg MS	<0.5	<0,5	
Arsenic (As)	mg/kg MS	0.07	0,15	
Sélénium (Se)	mg/kg MS	<0,1	<0,1	
Cadmium (Cd)	mg/kg MS	<0,015	<0,015	
Baryum (Ba)	mg/kg MS	0,13	<0,05	
Plomb (Pb)	mg/kg MS	<0,1	<0,1	
Molybdène (Mo)	mg/kg MS	<0,1	<0,1	
Antimoine (Sb)	mg/kg MS	<0,05	<0,05	

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

St Quentin Fallavier, le 02.07.2019

19-100981-09 19-100981-10 N° d'échantillon COMP ST15-16- COMP ST19-20-Désignation d'échantillon Unité 17.N1

Paramètres globaux / Indices

Fraction soluble

. aramonoo grobaakii marooo				
Carbone organique total (COT)	mg/kg MS	39,0	22,0	
Phénol (indice)	mg/kg MS	<0,1	<0,1	
Cations, anions et éléments non métallique	es			
Sulfates (SO4)	mg/kg MS	<100	<100	
Fluorures (F)	mg/kg MS	7,0	7,0	
Chlorures (CI)	mg/kg MS	<100	<100	
Analyse physique				

mg/kg MS

<1000

<1000

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

St Quentin Fallavier, le 02.07.2019

Informations sur les échantillons

N° d'échantillon :	19-100981-01	19-100981-02	19-100981-03	19-100981-04	19-100981-05
Date de réception :	21.06.2019	21.06.2019	21.06.2019	21.06.2019	21.06.2019
Désignation :	COMP ST1-2- 3.N1	COMP ST1-2- 3.N2	COMP ST4-5.N1	ST7.0	COMP ST4-5-6- 7.N2
Type d'échantillon :	Sol	Sol	Sol	Sol	Sol
Date de prélèvement :	19.06.2019	19.06.2019	19.06.2019	19.06.2019	19.06.2019
Récipient :	2X250VB	2X250VB	2X250VB	2X250VB	2X250VB
Température à réception (C°) :	5°C	5°C	5°C	5°C	5°C
Début des analyses :	21.06.2019	21.06.2019	21.06.2019	21.06.2019	21.06.2019
Fin des analyses :	02.07.2019	02.07.2019	02.07.2019	02.07.2019	02.07.2019
N° d'échantillon :	19-100981-06	19-100981-07	19-100981-08	19-100981-09	19-100981-10
Date de réception :	21.06.2019	21.06.2019	21.06.2019	21.06.2019	21.06.2019
Désignation :	COMP ST9-10.N1	COMP ST8-9- 10.N2	COMP ST11-12- 13-14.N1	COMP ST15-16- 17.N1	COMP ST19-20- .N1
Type d'échantillon :	Sol	Sol	Sol	Sol	Sol
Date de prélèvement :	19.06.2019	19.06.2019	19.06.2019	19.06.2019	19.06.2019
Récipient :	2X250VB	2X250VB	2X250VB	2X250VB	2X250VB
Température à réception (C°) :	5°C	5°C	5°C	5°C	5°C
Début des analyses :	21.06.2019	21.06.2019	21.06.2019	21.06.2019	21.06.2019
Fin des analyses :	02.07.2019	02.07.2019	02.07.2019	02.07.2019	02.07.2019

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

St Quentin Fallavier, le 02.07.2019

Informations sur les méthodes d'analyses

Paramètre Matières sèches	Norme NF ISO 11465(A)	Laboratoire Wessling Lyon (F)
Indice Hydrocarbures (C10-C40) (Agitation mécanique, purification au fluorisil)	NF EN ISO 16703(A)	Wessling Lyon (F)
Benzène et aromatiques	Méth. interne: "BTXHS NF EN ISO 11423-1 / NF EN ISO 22155"(A)	Wessling Lyon (F)
PCB	Méth. interne : "HAP-PCB NF EN ISO 6468 / NF ISO 18287 / NF T 90-115/ NF ISO 10382"(A)	Wessling Lyon (F)
HAP (16)	NF ISO 18287(A)	Wessling Lyon (F)
Lixiviation	Méth. interne : "LIXI NF EN 12457-2 "(A)	Wessling Lyon (F)
Lixiviation	Méth. interne : "LIXI NF EN 12457- 2"(A)	Wessling Lyon (F)
Résidu sec après filtration à 105+/-5°C	NF T90-029(A)	Wessling Lyon (F)
Fraction soluble	Calcul d'ap. résidu sec	Wessling Lyon (F)
Carbone organique total (COT)	NF EN 1484(A)	Wessling Lyon (F)
Carbone organique total (COT)	(calculé d'éluat à solide (1:10))	Wessling Lyon (F)
Phénol total (indice) après distillation sur eau / lixiviat	DIN EN ISO 14402 (1999-12)(A)	Wessling Lyon (F)
Indice Phénol total	(calculé d'éluat à solide (1:10))	Wessling Lyon (F)
Métaux sur eau / lixiviat (ICP-MS)	NF EN ISO 17294-2(A)	Wessling Lyon (F)
Métaux sur lixiviat	(calculé d'éluat à solide (1:10))	Wessling Lyon (F)
Mercure	(calculé d'éluat à solide (1:10))	Wessling Lyon (F)
Anions dissous (filtration à 0,2 μ)	Méth. interne : "ANIONS NF EN ISO 10304-1"(A)	Wessling Lyon (F)
Anions dissous (EN ISO 10304-1)	(calculé d'éluat à solide (1:10))	Wessling Lyon (F)
Sulfates (SO4)	(calculé d'éluat à solide (1:10))	Wessling Lyon (F)
Métaux sur eau / lixiviat (ICP-MS)	NF EN ISO 17294-2(A)	Wessling Lyon (F)
COT (Carbone Organique Total) calculé d'après matière organique	Méth. interne d'ap NF EN 13039	Wessling Lyon (F)

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

St Quentin Fallavier, le 02.07.2019

Informations sur les méthodes d'analyses

Commentaires :

Lixiviation : La prise d'essai effectuée sur l'échantillon brut en vue de la lixiviation est réalisée au carottier sans quartage préalable. La quantité de prise d'essai effectuée sur l'échantillon est de 20 g après homogénéisation, séchage et broyage en respectant le ratio 1/10

19-100981-01

Commentaires des résultats:

Résidu sec ap. filtr. (E/L), Résidu sec après filtration:

Valeurs significativement différentes entre le résidu sec et la conductivité dû à la nature chimique de la matrice.

Valable pour tous les échantillons de la série.

19-100981-09

Commentaires des résultats:

Résidu sec ap. filtr. (E/L), Résidu sec après filtration:

Valeurs significativement différentes entre le résidu sec et la conductivité dû à la nature chimique de la matrice.

Valable pour tous les échantillons de la série.

Les seuils de quantification fournis n'ont pas été recalculés d'après la matière sèche de l'échantillon. Les seuils sont susceptibles d'être augmentés en fonction de la nature chimique de la matrice.

Signataire Rédacteur

Signataire Technique

Estelle BOUVET

Responsable Service Clientèle

Fabienne LOISEL

Responsable Technique du Laboratoire Environnement

WESSLING France S.A.R.L. Z.I. De Chesnes Tharable .40 rue du Ruisseau BP 50705 .38297 Saint-Quentin-Fallavier Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

WESSLING France S.A.R.L, 40 rue du Ruisseau, 38070 Saint-Quentin-Fallavier Cedex

BIOBASIC Clermont-Ferrand Monsieur Julien TROQUET biopôle Clermont Limagne 63360 Saint Beauzire

ULY19-012807-1 Rapport d'essai n° : Commande n°: ULY-09992-19 Interlocuteur: C. Delente Téléphone: +33 474 999 629 eMail · Caroline.Delente@wessling.fr Date: 01.07.2019

Rapport d'essai

BEA638-006-SGM-SSP.DIAG

Les résultats ne se rapportent qu'aux échantillons soumis à l'essai.

Les méthodes couvertes par l'accréditation COFRAC NF EN ISO/CEI 17025 – 2005 sont marquées d'un A au niveau de la norme Les résultats obtenus par ces méthodes sont accrédités sauf avis contraire en remarque.

Les portées d'accréditation COFRAC n°1-1364 essais du laboratoire Wessling de Lyon (\$1 Quentin Fallavier), COFRAC n°1-578 du laboratoire Wessling de Lyon (\$1 Quentin Fallavier), COFRAC n°1-578 du laboratoire Wessling de Lille (Croix) sont disponibles sur le site www.cofrac.fr pour les résultats accrédités par les laboratoires Wessling FRANCE.
Les essais effectués par les laboratoires allemands sont accrédités par le DAKKS sous le numéro D-PL-14162-01-00 (www.as.dakks.de).

Les essais effectués par le laboratoire hongrois de Budapest sont accrédités par le NAT sous le numéro NAT-1-1398 (www.nat.hu). Les essais effectués par le laboratoire polonais de Krakow sont accrédités par le PCA sous le numéro AB 918 (www.pca.gov.pl).

Ce rapport d'essai ne peut être reproduit que sous son intégralité et avec l'autorisation des laboratoires WESSLING. Les laboratoires WESSLING autorisent leurs clients à extraire tout ou partie des résultats d'essai envoyés à titre indicatif sous format excel uniquement à des fins de retraitement, de suivi et d'interprétation de données sans faire allusion à l'accréditation des résultats d'essai. La conclusion ne tient pas compte des incertitudes (disponibles sur demande) et n'est pas couverte par l'accréditation

Page 1 sur 6

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

St Quentin Fallavier, le 01.07.2019

N° d'échantillon Désignation d'échantillon	Unité	19-100938-01 ST2.0	19-100938-02 ST4.0	19-100938-03 ST6.0	19-100938-04 ST8.0
Analyse physique					
Matière sèche	% mass MB	81,9	78,2	76,4	83,5
Paramètres globaux / Indices					
Indice hydrocarbure C10-C40	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C21-C35	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	<20	<20
Métaux lourds					
Eléments					
Chrome (Cr)	mg/kg MS	16	17	10	18
Nickel (Ni)	mg/kg MS	16	17	10	15
Cuivre (Cu)	mg/kg MS	17	13	10	15
Zinc (Zn)	mg/kg MS	89	86	63	83
Arsenic (As)	mg/kg MS	10	8,0	8,0	33
Sélénium (Se)	mg/kg MS	<5,0	<5,0	<5,0	<5,0
Molybdène (Mo)	mg/kg MS	<10	<10	<10	<10
Cadmium (Cd)	mg/kg MS	<0,5	<0,5	<0,5	<0,5
Antimoine (Sb)	mg/kg MS	<10	<10	<10	<10
Baryum (Ba)	mg/kg MS	240	180	140	230
Mercure (Hg)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Plomb (Pb)	mg/kg MS	<10	<10	<10	14
Préparation d'échantillon					
Minéralisation à l'eau régale		27/06/2019	27/06/2019	27/06/2019	27/06/2019

Rapport d'essai n°.: ULY19-012807-1 Projet : BEA638-006-SGM-SSP.DIAG

WESSLING France S.A.R.L. Z.I. De Chesnes Tharabie . 40 rue du Ruisseau BP 50705 . 38297 Saint-Quentin-Fallavier Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

St Quentin Fallavier, le 01.07.2019

N° d'échantillon Désignation d'échantillon	Unité	19-100938-05 ST10.25	19-100938-06 ST12.0	19-100938-07 ST14.0	19-100938-08 ST15.20
Analyse physique					
Matière sèche	% mass MB	75,1	86,4	78,2	87,1
Paramètres globaux / Indices					
Indice hydrocarbure C10-C40	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C21-C35	mg/kg MS	<20	<20	<20	<20
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	<20	<20
Métaux lourds					
Eléments					
Chrome (Cr)	mg/kg MS	14	18	13	15
Nickel (Ni)	mg/kg MS	12	15	12	14
Cuivre (Cu)	mg/kg MS	13	12	12	10
Zinc (Zn)	mg/kg MS	76	89	77	72
Arsenic (As)	mg/kg MS	11	16	10	8,0
Sélénium (Se)	mg/kg MS	<5,0	<5,0	<5,0	<5,0
Molybdène (Mo)	mg/kg MS	<10	<10	<10	<10
Cadmium (Cd)	mg/kg MS	<0,5	<0,5	<0,5	<0,5
Antimoine (Sb)	mg/kg MS	<10	<10	<10	<10
Baryum (Ba)	mg/kg MS	200	200	160	120
Mercure (Hg)	mg/kg MS	<0,1	<0,1	<0,1	<0,1
Plomb (Pb)	mg/kg MS	<10	<10	<10	<10
Préparation d'échantillon					
Minéralisation à l'eau régale		27/06/2019	27/06/2019	27/06/2019	27/06/2019

Rapport d'essai n°.: ULY19-012807-1 Projet: BEA638-006-SGM-SSP.DIAG

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

St Quentin Fallavier, le 01.07.2019

Préparation d'échantillon Minéralisation à l'eau régale

N° d'échantillon		19-100938-09	19-100938-10	
Désignation d'échantillon	Unité	ST17.0	ST18.0	
Analyse physique				
Matière sèche	% mass MB	88,4	88,5	
Paramètres globaux / Indices				
Indice hydrocarbure C10-C40	mg/kg MS	<20	<20	
Hydrocarbures > C10-C12	mg/kg MS	<20	<20	
Hydrocarbures > C12-C16	mg/kg MS	<20	<20	
_		<20	<20	
Hydrocarbures > C16-C21	mg/kg MS	<20	<20	
Hydrocarbures > C21-C35	mg/kg MS			
Hydrocarbures > C35-C40	mg/kg MS	<20	<20	
••//				
Métaux lourds				
Eléments				
Chrome (Cr)	mg/kg MS	29	2,0	
Nickel (Ni)	mg/kg MS	29	<1,0	
Cuivre (Cu)	mg/kg MS	23	2,0	
Zinc (Zn)	mg/kg MS	120	8,0	
Arsenic (As)	mg/kg MS	15	<2,0	
Sélénium (Se)	mg/kg MS	<5,0	<5,0	
Molybdène (Mo)	mg/kg MS	<10	<10	
Cadmium (Cd)	mg/kg MS	<0,5	<0,5	
Antimoine (Sb)	mg/kg MS	<10	<10	
Baryum (Ba)	mg/kg MS	290	7,0	
Mercure (Hg)	mg/kg MS	<0,1	<0,1	
Plomb (Pb)	mg/kg MS	13	<10	

27/06/2019

27/06/2019

Rapport d'essai n°.: ULY19-012807-1 Projet : BEA638-006-SGM-SSP.DIAG

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37 labo@wessling.fr. www.wessling.fr

St Quentin Fallavier, le 01.07.2019

Informations sur les échantillons

N° d'échantillon :	19-100938-01	19-100938-02	19-100938-03	19-100938-04	19-100938-05
Date de réception :	21.06.2019	21.06.2019	21.06.2019	21.06.2019	21.06.2019
Désignation :	ST2.0	ST4.0	ST6.0	ST8.0	ST10.25
Type d'échantillon :	Sol	Sol	Sol	Sol	Sol
Date de prélèvement :	19.06.2019	19.06.2019	19.06.2019	19.06.2019	19.06.2019
Récipient :	250VB	250VB	250VB	250VB	250VB
Température à réception (C°) :	5°C	5°C	5°C	5°C	5°C
Début des analyses :	21.06.2019	21.06.2019	21.06.2019	21.06.2019	21.06.2019
Fin des analyses :	28.06.2019	28.06.2019	01.07.2019	01.07.2019	28.06.2019
N° d'échantillon :	19-100938-06	19-100938-07	19-100938-08	19-100938-09	19-100938-10
Date de réception :	21.06.2019	21.06.2019	21.06.2019	21.06.2019	21.06.2019
Désignation :	ST12.0	ST14.0	ST15.20	ST17.0	ST18.0
Type d'échantillon :	Sol	Sol	Sol	Sol	Sol
Date de prélèvement :	19.06.2019	19.06.2019	19.06.2019	19.06.2019	19.06.2019
Récipient :	250VB	250VB	250VB	250VB	250VB
Température à réception (C°) :	5°C	5°C	5°C	5°C	5°C
Début des analyses :	21.06.2019	21.06.2019	21.06.2019	21.06.2019	21.06.2019
Fin des analyses :	28.06.2019	28.06.2019	28.06.2019	28.06.2019	28.06.2019

Rapport d'essai n°.: ULY19-012807-1 Projet : BEA638-006-SGM-SSP.DIAG

WESSLING France S.A.R.L.
Z.I. De Chesnes Tharabie . 40 rue du Ruisseau
BP 50705 . 38297 Saint-Quentin-Fallavier
Tel. +33 (0)4 74 99 96 20 . Fax +33 (0)4 74 99 96 37
labo@wessling.fr. www.wessling.fr

St Quentin Fallavier, le 01.07.2019

Informations sur les méthodes d'analyses

Paramètre	Norme	Laboratoire
Indice Hydrocarbures (C10-C40) (Agitation mécanique fluorisil)	e, purification au NF EN ISO 16703(A)	Wessling Lyon (F)
Minéralisation à l'eau régale	Méth. interne : " MINE NF ISO 11466"(A)	Wessling Lyon (F)
Métaux	Méth. interne : "ICP-MS NF EN ISO 17294-2"(A)	Wessling Lyon (F)
Matières sèches	NF ISO 11465(A)	Wessling Lyon (F)

Commentaires:

19-100938-01

Commentaires des résultats:

Métaux (S), Cuivre (Cu): Résultat hors champ d'accréditation dû à la contamination du blanc de minéralisation Remarque valable pour tous les echantillions

Métaux (S), Zinc (Zn): Résultat hors champ d'accréditation dû à la contamination du blanc de minéralisation Remarque valable pour tous les echantillions

Les seuils de quantification fournis n'ont pas été recalculés d'après la matière sèche de l'échantillon. Les seuils sont susceptibles d'être augmentés en fonction de la nature chimique de la matrice.

Signataire Rédacteur

Signataire Technique

Estelle BOUVET

Responsable Service Clientèle

Alexandra CROIZIERS

Responsable qualité

Copyright © 2019, Biobasic Environnement® - Tous droits de reproduction réservés

Annexe VII

Source : Laboratoires Wessling

Accréditations du laboratoire d'analyse (et extrait de l'annexe technique relative aux analyses de sol)

Diagnostic de pollution des sols Projet d'extension des tribunes du stade Gabriel Montpied - Clermont-Fd (63100)

BE/CAM-SGM.SSP.diag/06.19/jt.v0 - confidentiel Annexe VII ; Source : Laboratoires Wessling Copyright © 2019, Biobasic Environnement® - Tous droits de reproduction réservés

D'ACCREDITATION ___

Laboratoires WESSLING

ZI de Chesnes Tharabie 30 rue du Ruisseau 38070 SAINT QUENTIN FALLAVIER

> est accrédité is accredited

par la section LABORATOIRES by LABORATORIES section

selon la norme NF EN ISO/CEI 17025 et les règles d'application du Cofrac sous le numéro

in compliance with ISO/IEC 17025 standard and Cofrac rules of application under n°

1-1364

Pour : des activités d'essais For : test activities

Les activités couvertes et la validité de l'accréditation sont précisées dans l'attestation en vigueur qui lui a été délivrée.

The activities covered and the validity of accreditation are stipulated in the accreditation certificate in force which has been issued with it.

Durant cette période, l'organisme s'engage à respecter à tout moment les exigences de l'accréditation. During this period, the organisation undertakes to abide at all times by the requirements of accreditation.

> Le Directeur Général Managing Director

Daniel Pierre

Convention N° 1058

ATTESTATION D'ACCREDITATION

ACCREDITATION CERTIFICATE

N° 1-1364 rév. 20

Le Comité Français d'Accréditation (Cofrac) atteste que : The French Committee for Accreditation (Cofrac) certifies that :

LABORATOIRES WESSLING

N° SIREN: 423257542

Satisfait aux exigences de la norme NF EN ISO/CEI 17025 : 2005

Fulfils the requirements of the standard

et aux règles d'application du Cofrac pour les activités d'analyses/essais/étalonnages en : and Cofrac rules of application for the activities of testing/calibration in :

ENVIRONNEMENT / AMIANTE - BATIMENT ET MATERIAUX - Qualité de l'Air - QUALITE DE L'EAU - MATRICES SOLIDES

ENVIRONMENT / ASBESTOS - BUILDING AND MATERIALS - AIR QUALITY - WATER QUALITY - SOLID MATRICES
LIEUX DE TRAVAIL / Air

WORKPLACES / AIR

réalisées par / performed by :

Laboratoires WESSLING ZI de Chesnes Tharabie 40, rue du Ruisseau 38070 SAINT QUENTIN FALLAVIER

et précisément décrites dans l'annexe technique jointe and precisely described in the attached technical appendix

L'accréditation suivant la norme internationale homologuée NF EN ISO/IEC 17025 est la preuve de la compétence technique du laboratoire dans un domaine d'activités clairement défini et du bon fonctionnement dans ce laboratoire d'un système de management adapté (cf. communiqué conjoint ISO-ILAC-IAF en vigueur disponible sur le site internet du Cofrac www.cofrac.fr)

Accreditation in accordance with the recognised international standard NF EN ISO/IEC 17025 demonstrates the technical competence of the laboratory for a defined scope and the proper operation in this laboratory of an appropriate management system (see current Joint ISO-ILAC-IAF Communiqué available on Cofrac web site www.cofrac.fr).

Le Cofrac est signataire de l'accord multilatéral d'EA pour l'accréditation, pour les activités objets de la présente attestation.

Cofrac is signatory of the European co-operation for Accreditation (EA) Multilateral Agreement for accreditation for the activities covered by this certificate.

LAB FORM 37 - Révision 08 - 08 janvier 2019

Page 1/21

Convention N° 1058

Date de prise d'effet / granting date : 12/02/2019
Date de fin de validité / expiry date : 31/10/2022

Pour le Directeur Général et par délégation On behalf of the General Director

Le Responsable du Pôle Chimie Environnement, Pole manager - Chemistry Environment,

Stéphane BOIVIN

La présente attestation n'est valide qu'accompagnée de l'annexe technique. This certificate is only valid if associated with the technical appendix.

L'accréditation peut être suspendue, modifiée ou retirée à tout moment. Pour une utilisation appropriée, la portée de l'accréditation et sa validité doivent être vérifiées sur le site internet du Cofrac (www.cofrac.fr).

The accreditation can be suspended, modified or withdrawn at any time. For a proper use, the scope of accreditation and its validity should be checked on the Cofrac website (www.cofrac.fr).

Cette attestation annule et remplace l'attestation N° 1-1364 Rév 19. This certificate cancels and replaces the certificate N° 1-1364 $\frac{Rév}{19}$.

Seul le texte en français peut engager la responsabilité du Cofrac. The Cofrac's liability applies only to the french text.

Comité Français d'Accréditation - 52, rue Jacques Hillairet 75012 PARIS

Tél.: +33 (0)1 44 68 82 20 - Fax: 33 (0)1 44 68 82 21 Siret: 397 879 487 00031 www.cofrac.fr

LAB FORM 37 - Révision 08 - 08 janvier 2019

Page 2/21

ANNEXE TECHNIQUE

à l'attestation N° 1-1364 rév. 20

L'accréditation concerne les prestations réalisées par :

Laboratoires WESSLING ZI de Chesnes Tharabie 40, rue du Ruisseau 38070 SAINT QUENTIN FALLAVIER

Dans ses unités :

- Laboratoires de Saint Quentin Fallavier
- Pôle Amiante

Elle porte sur : voir pages suivantes

* Analyses des sols en relation avec l'environnement (ex. Prog. 134)

Le prétraitement de l'échantillon est obligatoirement suivi d'une analyse au sein du laboratoire.

ENVIRONNEMENT / MATRICES SOLIDES / Analyses physico-chimiques Analyses des sols en relation avec l'environnement (ex. Prog. 134)				
OBJET	CARACTERISTIQUE MESUREE OU RECHERCHEE	PRINCIPE DE LA METHODE	REFERENCE DE LA METHODE	
Sols	Prétraitement (paramètres inorganiques)	Séchage, tamisage, broyage	Méthode interne : «PGS NF ISO 11464»*	
Sols	Prétraitement (paramètres organiques)	Carottage	NF ISO 14507	
Sols	Prétraitement (semi volatils)	Carottage, séchage, tamisage, broyage	NF EN 16179	
Sols	Matières sèches (ou humidité)	Gravimétrie	NF ISO 11465	
Sols	Matières sèches	Séchage par infra rouge	Méthode interne : « MS par IR NF ISO 11465 »*	
Sols	рН	Potentiométrie	NF ISO 10390	
Sols	Carbone organique total	Combustion sèche	NF ISO 10694	
Sols	Cyanures aisément libérables et totaux	Agitation dans soude 1M durant 1 heure et flux continu	NF EN ISO 17380	
Sols	Chrome VI	Spectrométrie visible	Méthode interne : « CrVI DIN 19734 »*	
Sols	Chrome VI	Digestion alcaline et chromatographie ionique avec détection spectrophotométrique	NF ISO 15192	
Sols	Métaux : Aluminium, antimoine, argent, arsenic, baryum, béryllium, bismuth, cadmium, calcium, chrome, cobalt, cuivre, étain, fer, gallium, indium, lithium, magnésium, manganèse, mercure, molybdène, nickel, phosphore, plomb, potassium, sélénium, sodium, strontium, thallium, titane, uranium, vanadium, zinc	Minéralisation à l'eau régale (Digiprep) et dosage par ICP/MS	Méthode interne : « MINE NF ISO 11466 »* Méthode interne : « ICP-MS NF EN ISO 17294-2 »*	
Sols	Hydrocarbures (C10 à C40)	Extraction solide/liquide et dosage par GC/FID	NF EN ISO 16703	
Sols	Indices hydrocarbures volatils de C5 à C10	Extraction solide/liquide, espace de tête statique et dosage par GC/MS	Méthode interne : « C5-C10 BTX NF EN ISO 22155/ NF ISO 11423-1 »*	
Sols	Dosage des fractions aliphatiques de C5 à C10	Espace de tête statique et dosage par GC/MS	NF EN ISO 16558-1	
Sols	Détermination des fractions aliphatiques et aromatiques des hydrocarbures de pétrole semi-volatils	Extraction solide/liquide et dosage par GC/FID	XP CEN ISO / TS 16558-2 PR XP CEN ISO / TS 16558-2 / A1	
	Hydrocarbures aromatiques polycycliques :			
Sols	Naphtalène, acénaphtylène, acénaphthène, fluorène, phénanthrène, anthracène, fluoranthène, pyrène, benzo(a)anthracène, chrysène, benzo(b)fluoranthène, benzo(k)fluoranthène, benzo(a)pyrène, dibenzo(ah)anthracène, benzo(ghi)pérylène, indéno(1,2,3-cd)pyrène	Extraction solide/liquide et dosage par GC/MS	NF ISO 18287	
Sols	Polychlorobiphényles: PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 153, PCB 180	Extraction solide/liquide et dosage par GC/MS	Méthode interne : « HAP-PCB NF EN ISO 6468/ NF ISO 18287/ NF T 90-115/ NF ISO 10382 »*	

	ENVIRONNEMENT / MATRICES SOLIDES / Analyses physico-chimiques Analyses des sols en relation avec l'environnement (ex. Prog. 134)				
OBJET	CARACTERISTIQUE MESUREE OU RECHERCHEE	PRINCIPE DE LA METHODE	REFERENCE DE LA METHODE		
Sols	Polychlorobiphényles : PCB 28, PCB 52, PCB 101, PCB 118, PCB 138, PCB 153, PCB 180	Extraction solide/liquide et dosage par GC/MS	NF EN 16167		
Sols	Pesticides: Alpha-HCH, beta-HCH, gamma-HCH, delta-HCH, epsilon-HCH, aldrine, dieldrine, opDDD, opDDE, ppDDD, ppDDE	Extraction solide/liquide et dosage par GC/MS	Méthode interne : « ChloroB lourds NF EN ISO 6468/ NF ISO 10382 »*		
Sols	Chlorobenzènes lourds: Hexachlorobenzène, 1,2,3,4-tétrachlorobenzène, 1,2,4,5-tétrachlorobenzène, 1,2,3,5-tétrachlorobenzène, pentachlorobenzène	Extraction solide/liquide et dosage par GC/MS	Méthode interne : « ChloroB lourds NF EN ISO 6468/ NF ISO 10382 »*		
Sols	Chlorobenzènes volatils: Monochlorobenzène, 1,2-dichlorobenzène, 1,3-dichlorobenzène, 1,4-dichlorobenzène, 1,2,3-trichlorobenzène, 1,2,4-trichlorobenzène, 1,3,5-trichlorobenzène	Extraction solide/liquide, espace de tête statique et dosage par GC/MS	Méthode interne : « ChloroB NF EN ISO 22155/ NF ISO 11423-1 »*		
Sols	<u>Chlorobenzènes volatils</u> : Monochlorobenzène, 1,2-dichlorobenzène, 1,3-dichlorobenzène, 1,4-dichlorobenzène	Extraction solide/liquide, espace de tête statique et dosage par GC/MS	NF EN ISO 22155		
Sols	Composés organohalogénés volatils: 1,1,2-trichloroéthane, bromoforme, bromochlorométhane, dibromochlorométhane, bromodichlorométhane, chloroéthane, 1,2-dichloropropane, 1,1,2,2-tétrachloroéthane, hexachloroéthane, tétrachloroéthène, trichloroéthène, tétrachlorométhane, 1,1-trichloroéthane, trichlorométhane, cis-dichloroéthène, 1,1-dichloroéthane, trans-dichloroéthène, dichlorométhane, 1,1-dichloroéthène, chlorure de vinyle, 1,2-dichloroéthane, bromométhane, cis-1,3-dichloropropène, 1,2-dibromo-3-chloropropane, 1,1,1,2-tétrachloroéthane, hexachlorobutadiène, 1,2-dibromoéthane, dibromométhane, trichlorotrifluoroéthane (fréon 113)	Extraction solide/liquide, espace de tête statique et dosage par GC/MS	Méthode interne : « COHV NF EN ISO 10301/ NF EN ISO 22155 »*		
Sols	Composés organohalogénés volatils: Tétrachloroéthène, trichloroéthène, tétrachlorométhane, 1,1,1-trichloroéthane, trichlorométhane, cis-dichloroéthène, 1,1-dichloroéthane, trans-dichloroéthène, dichlorométhane, 1,1-dichloroéthène, chlorure de vinyle, 1,2-dichloroéthane, 1,1,2-trichloroéthane, bromoforme, bromochlorométhane, dibromochlorométhane, bromodichlorométhane, chloroéthane, 1,2-dichloropropane, 1,1,2,2-tétrachloroéthane, hexachloroéthane, bromométhane, cis-1,3-dichloropropène, 1,2-dibromo-3-chloropropane, 1,1,1,2-tétrachloroéthane, hexachlorobutadiène, 1,2-dibromoéthane, dibromométhane, trichlorotrifluoroéthane (freon 113)	Extraction solide/liquide, espace de tête statique et dosage par GC/MS	NF EN ISO 22155		
Sols	Benzène et aromatiques : Benzène, toluène, éthylbenzène, m,p-xylène, o-xylène, cumène, p,m-éthyltoluène, pseudocumène, hémélitène, mésitylène, o-éthyltoluène, naphtalène, styrène	Extraction solide/liquide, espace de tête statique et dosage par GC/MS	Méthode interne : « BTXHS NF EN ISO 11423-1/ NF EN ISO 22155 »*		
Sols	Benzene et aromatiques : Benzène, toluène, éthylbenzène, m,p-xylène, o-xylène, cumène, p,m-éthyltoluène, pseudocumène, hémélitène, mésitylène, o-éthyltoluène, naphtalène, styrène	Extraction solide/liquide, espace de tête statique et dosage par GC/MS	NF EN ISO 22155		

ENVIRONNEMENT / MATRICES SOLIDES / Analyses physico-chimiques Analyses des sols en relation avec l'environnement (ex. Prog. 134)					
OBJET	OBJET CARACTERISTIQUE MESUREE OU RECHERCHEE PRINCIPE DE LA METHODE				
Sols	Ethyltertiobutyléther (ETBE), Méthyltertiobutyléther (MTBE), Diisopropyléther (DIPE)	Extraction solide/liquide, espace de tête statique et dosage par GC/MS	Méthode interne : « MTBE-ETBE NF ISO 11423-1/ NF EN ISO 22155 »*		
Sols	Ethyltertiobutyléther (ETBE), Méthyltertiobutyléther (MTBE), Diisopropyléther (DIPE)	Extraction solide/liquide, espace de tête statique et dosage par GC/MS	NF EN ISO 22155		

Portée de type FLEX1 : Le laboratoire est reconnu compétent pour pratiquer les essais en suivant les méthodes référencées et leurs révisions ultérieures.

* Caractérisation des sols

Les sols sont des sols potentiellement pollués.

ENVIRONNEMENT / MATRICES SOLIDES / Analyses physico-chimiques Caractérisation des sols – Préparation et traitement des échantillons – HP ENV					
OBJET	OBJET CARACTERISTIQUE MESUREE OU PRINCIPE DE LA METHODE REFERENCE DE LA METHODE				
Sols	Lixiviation	Lixiviation (10 l/kg)	Méthode interne : « LIXI NF EN 12457-2 »		
Sols	Lixiviation	Lixiviation (10 l/kg) 1*16H	Méthode interne : « LIXI-16h DIN 38414 S4 »		

<u>Portée de type FIXE</u> : Le laboratoire est reconnu compétent pour pratiquer les essais en respectant strictement les méthodes mentionnées dans la portée d'accréditation. Les modifications techniques du mode opératoire ne sont pas autorisées.

Copyright © 2019, Biobasic Environnement® - Tous droits de reproduction réservés

^{* &}lt;u>Portée de type FIXE</u> : Le laboratoire est reconnu compétent pour pratiquer les essais en respectant strictement les méthodes mentionnées dans la portée d'accréditation. Les modifications techniques du mode opératoire ne sont pas autorisées.

L'étape de préparation de l'échantillon est obligatoirement suivie d'une analyse. De même, les essais suivants sont réalisés sur les éluats obtenus adaptée du test de lixiviation obligatoirement mis en œuvre par le laboratoire.

ENVIRONNEMENT / MATRICES SOLIDES / Analyses physico-chimiques Caractérisation des sols – Analyses des éluats (sols) – HP ENV				
OBJET	CARACTERISTIQUE MESUREE OU RECHERCHEE	PRINCIPE DE LA METHODE	REFERENCE DE LA METHODE	
Eluats (sols)	Résidu sec	Gravimétrie	NF T 90-029	
Eluats (sols)	Conductivité	Méthode à la sonde	NF EN 27888	
Eluats (sols)	рН	Potentiométrie	NF T 90-008 (février 2001 – norme abrogée) **	
Eluats (sols)	рН	Potentiométrie	NF EN ISO 10523	
Eluats (sols)	Fluorures	Potentiométrie	NF T 90-004	
Eluats (sols)	Anions : Bromures, chlorures, fluorures, nitrates, nitrites, sulfates, iodures	Filtration à 0,2 µm et chromatographie ionique	Méthode interne : « ANIONS NF EN ISO 10304-1 »*	
Eluats (sols)	Carbone organique total	Combustion / IR	NF EN 1484	
Eluats (sols)	AOX	Adsorption / Combustion / Coulométrie	Méthode interne : « AOX NF EN ISO 9562 »*	
Eluats (sols)	Azote Kjeldhal	Distillation et volumétrie	NF EN 25663	
Eluats (sols)	Ammonium	Flux continu	NF EN ISO 11732	
Eluats (sols)	Indice phénol	Flux continu	NF EN ISO 14402	
Eluats (sols)	Cyanures libres et totaux	Flux continu	NF EN ISO 14403-2	
Eluats (sols)	Chrome VI	Spectrométrie visible	NF T 90-043	
Eluats (sols)	Métaux dissous : Aluminium, antimoine, argent, arsenic, baryum, béryllium, bismuth, cadmium, calcium, chrome, cobalt, cuivre, étain, fer, gallium, indium, lithium, magnésium, manganèse, mercure, molybdène, nickel, phosphore, plomb, potassium, sélénium, sodium, strontium, thallium, titane, uranium, vanadium, zinc	Dosage par ICP/MS	NF EN ISO 17294-2	

<u>Portée de type FLEX1</u> : le laboratoire est reconnu compétent pour pratiquer les essais en suivant les méthodes référencées et leurs révisions ultérieures.

* Analyse de déchets

	Analyse de decirets				
	ENVIRONNEMENT / MATRICES SOLIDES / Analyses physico-chimiques				
	Analyse de déchets	(HP ENV)			
OBJET	CARACTERISTIQUE MESUREE OU RECHERCHEE	PRINCIPE DE LA METHODE	REFERENCE DE LA METHODE		
Déchets (matériaux de démolition, de déconstruction et enrobés routiers)	Hydrocarbures aromatiques polycycliques: Naphtalène, acénaphtylène, acénaphthène, fluorène, phénanthrène, anthracène, fluoranthène, pyrène, benzo(a)anthracène, chrysène, benzo(b)fluoranthène, benzo(k)fluoranthène, benzo(a)pyrène, dibenzo(ah)anthracène, benzo(ghi)pérylène, indéno(1,2,3-cd)pyrène	Extraction solide/liquide et dosage par GC/MS	Méthode interne * (pré- traitement) Et NF EN 15527 (Analyse)		

<u>Portée de type FLEX1</u> : le laboratoire est reconnu compétent pour pratiquer les essais en suivant les méthodes référencées et leurs révisions ultérieures.

LAB FORM 37 - Révision 08 - 08 janvier 2019

Page 19/21

^{* &}lt;u>Portée de type FIXE</u> : Le laboratoire est reconnu compétent pour pratiquer les essais en respectant strictement les méthodes mentionnées dans la portée d'accréditation. Les modifications techniques du mode opératoire ne sont pas autorisées.

^{** &}lt;u>Portée de type FIXE</u>: Le laboratoire est reconnu compétent pour pratiquer les essais en respectant strictement les méthodes mentionnées dans la portée d'accréditation.

^{* &}lt;u>Portée de type FIXE</u> : Le laboratoire est reconnu compétent pour pratiquer les essais en respectant strictement les méthodes mentionnées dans la portée d'accréditation. Les modifications techniques du mode opératoire ne sont pas autorisées.